Svr T Py

-

NAVAL POSTGRADUATE SCHOOL

_ Monterey, California

DTIC
ELECTE =

qu

OCTO‘Z]S’BQ%
D™

THESIS

THE DESIGN AND IMPLEMENTATION OF A
. SPECIFICATION LANGUAGE TYPE CHECKER

by
Robert George Kopas

AD-A213 026

June 1989

Thesis Advisor:

Valdis Berzins

Approved for public release; distribution is unlimited

-

89 10 2 111

_

Unclassified

Secunity Classification of this page

REPORT DOCUMENTATION PAGE

la Reporn Security Classification L Ib Restricive Markings
Unclassified
2a Secunty Classification Authority 3 Distribution Availability of Report
2 Declassification/Downgrading Schedule Approved for public release; distribution is unlimited.
4 Peaforming Organization Report Number(s) 5 Monitoring Organization Report Number(s)
6a Name of Performing Organization 6b Office Symbol 7a Name of Monitoring Organization
Naval Postgraduate School (If Applicable) 52 Naval Postgraduate School
6c Address (city, state, and ZIP coce) D Address (city, state, and ZIP code)
Monterey, CA 93943-5000 Monterey, CA 93943-5000
82 Name of Funding/Sponsoring Organization 8b Office Symbol 9 Procurement Instrument Identification Number
(If Applicable)
8c Address (city, state, and ZIP code) 10 Source of Funding Numbers
Program Elemenst Number Project No Teak No Wark Unit Accession Ne

11 Tide (Inciude Security Classification)

The Design and Implementation of a Specification Language Type Checker
12 Personal Avthor(s)
Kopas, Robert G.
13a Type of Report 13b Time Covered 14 Date of Report (year, month.day) 15 Page Count
Master's Thesis From To June 1989 219
16 Supplementary Notation 1he views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.

17 Cosati Codes 18 Subject Terms (continue on reverse if necessary and identify by block number)

Field | Group subgrowp |-4Specification Language, Type Checker, Attribute Grammar, Software
Engineering, SPEC Specification Language, ~ - :

_A

19 Abstract (continue on reverse if necessary and identify by block number

The purpose of this thesis is to design a type checker for the SPEC language and to investigate its
implementation using an attribute grammar tool. SPEC is a formal language for writing black-box specifications
for large software systems. The type checker is a software tool which verifies the semantic accuracy of the
declarations and their uses in a SPEC source program. The design specifically addresses language features which
are especially important for large software system specification such as generic parameters, name and operator
overloading, subtypes, importation and inheritance. Additional discussion is provided concerning the handling of
the "non-block structured” nature of the specification language. This thesis implements two of the three aspects of
tvpe checking--name analysis and error reporting. Additionally, a definitive framework is laid for the final aspect,
type consistency analysis.

X _ Distribution/Availability of Abstract 2 Abstract Security Classification
(X] unclassifiedrmlimied [| sumeasreport [] DTICusen Unclassified
22a Name of Responsibie Individual 22b Telephone (Include Area code) 22¢ Office Symbol
Prof. Valdis Berzins (408) 646-2461 Code 52Bz
DD FORM 1473, 84 MAR 83 APR ediuon may be used unul exhausted security classificauon of this page
All other editions are obsolete Unclassified

Approved for public release; distribution is unlimited.

The Design and Implementation of a Specification Language
Type Checker

by

Robert George Kopas
Lieutenant, United States Navy
B.S., Purdue University, 1984

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
JUNE 1989

Author: _AZM%@
obert George Kopas

7]

s

qry - U
Approved by: \ 1_ { Ly

PN
lk 4
Valdis Berzins, Thesis’ Advisor
%

Rt (b B,

Robert McGhee, Chairman, Department of
Computer Science

. T.M
Kpeal

Dean of Information e

ABSTRACT

The purpose of this thesis is to design a type checker for the SPEC language and to
investigate its implementation using an attribute grammar tool. SPEC is a formal
language for writing black-box specifications for large software systems. The type
checker is a software tool which verifies the semantic accuracy of the declarations and
their uses in a SPEC source program. The design specifically addresses language
features which are especially important for large software system specification such as
generic parameters, name and operator overloading, subtypes, importation and
inheritance. Additional discussion is provided concerning the handling of the "non-block
structured” nature of the specification language. This thesis implements two of the three
aspects of type checking--name analysis and error reporting. Additionally, a definitive

framework is laid for the final aspect, type consistency analysis.

~"«cccmon For)
NTIS CRARI N
DHC 1AH 0
Uaanno e 0
Justhic .
LTI
3y e
SRS
I e
DI\‘ RN
]
Al
! {
_ ! -

TABLE OF CONTENTS
INTRODUCTION. et e e e e e e e e e e e e e e e 1
A, OBIECTIVES. i i ittt ittt et iie et iin e o1
B. RESEARCHQUESTIONS. ittt i e e 2
C. THE HISTORY AND SUCCESSFUL APPLICATIONS OF ATTRIBUTE
GRAMMARS TOSIMILARPROBLEMS. 2
1. The Context Free Nature of SPEC--A Pretty Printer. 3
2. MSG.84 and MSG.85--A Translator for a Specification Language. 4
3. The Design of a Compiler--Farrow 1984.: 4
4. Syn--A Graphical Representation of Bachus NaurForm. 5
5. The Chameleon Architecture. e, S5
D. A SPECIFICATION TYPE CHECKER AND "CASE".. 6
1. Descriptionof CASE. 6
2. Benefitsfor CASE. e 6
BACKGROUND. i ittt i et e e e e i ie e e 7
A. TYPECHECKER. e e e e e e e 7
L Definition.ttt e e e 7
2. Scope Considerations.o i v it e e 8
B. ATTRIBUTE GRAMMARS. e i 8
1. Atmibute Grammars e e e 8
a. Definition. ., e e e 9
b. Synthesized and Inherited Attributes. 9
c. SemanticFunctions.. e 9
2. Automatic Parsing of Attribute Grammars--Application Generators 9
a. DefinitionandOverview..c...... 10
b. TheSemanticTree.. 11
c. SemanticAnalysis.. o e 11
d. Advantages and Disadvantages.. 11
e. Existing ApplicationGenerators. i 13
C. THE KODIYAK APPLICATION GENERATOR. 13
1. Justificationforuse., e e 13
2. A General Description of the Kodiyak Language.. 14
a Format. e e e e e 14
b. Comments.ttt 15
¢. Lexical Scanner Section..c ... 15
d. Attribute Declaration Section. 18
e. The Attribute Grammar and Semantic Function Section.. 20

iv

—»

f. Using the Kodiyak Translator.. 24

D. THESPECLANGUAGE. i 25

I. The EventModel i i i 25

2. The SPECLanguage.t 29

. a. Functions. e e e 29

b. StateMachines. 30

. B 3 31

OI. SYSTEM DESIGN. e i e e 35

A. SPEC LANGUAGE TYPE CONSISTENCY CONSTRAINTS.. 35

1. SPEC Language SemanticIssues.. 35

a Deflnitions. i e e e 35

b. Scoping. e e e e 36

C. Naming Constraints. v oo v vt vttt et et oo eennns 37

d. Type Consistency Constraints.0..... 38

B. CONCEPTUALMODEL..ttt i i i 39

1. Requirements.ttt et e 39

2. Model. . . . e e e 41

C. DESIGN CONVENTIONS. e e e i e e e e 46

1. Arribute Naming. 0 e 46

2. MAMacro AbSITactions. oo i it e 47

a. Attrib_psgmd . . . L e e e 48

* b. Mymac.md 51

(1) Declaration GIOUP. . . . v . v v vt v vt et et ettt et e e e ee 51

. (2) Symbol and Visibility TablesGroup. 51

(3) Attribute EvaluationGroup.o oo v i 51

c. Myconstmd 51

IV, IMPLEMENTATION. i e e e e e e et e e 52

A. SEMANTIC INFORMATION STORAGE STRUCTURES. 52

1. Module Types. i i ittt 52

2. SymbolTable.. e e 53

a. Textual Names it 54

b. Parameters. e 54

C.Results.. e e e 55

d. Classes. e e e 55

3. Visibility Tables. e e 56

a. VisibleTypes. 56

> b. Visible Names..ttt 56

B. MAJORATTRIBUTES. ittt e i 57

v I ErrorReporting. 57
v

@ VEITOT_IMESSALE. . . & v v v v v v v v oo o m e oo e et oot e te e a s ann 57
b. DeclaratonErrors. e 57
c. ErrorConcatenation. it e 58
2. Buildingthe Symbol Table.. 58
3 Extended Types. . . o v vt ittt it e e e e e 59
C. NAME ANALYSIS. e e e 59
1. Checking if an identical declarationexists.. 60
2. Makinganewdeclaration., 60
3. RepOrting an eITOr. . . . & . v v v vttt bt s s i e it n i e s e e e e 60
D. IDENTIFYINGERRORSTOTHEUSER.. 61
V. EXTENSIONS. . . it it e i et s s e st a 62
A. TYPECONSISTENCY ANALYSIS. i oo 62
1. Seeking the Correct Symbol Table Entry.. 62
2. Obtaining a Symbol Tableentry’stype.. 63
3. Determining if an Operatorisdefined.. 63
4, Reporting Errors. e 63
B. SPECIAL SPECLANGUAGEISSUES.. 64
1. Inheritance & Instance Declarations. 64
a. PreprocessorUsage. it 65
b. Error Reporting Drawback. 65
c. Potential Advantages. e e e 65
2. Importation & Exportation.t 66
C. IMPROVEDERRORREPORTING. 67
D. SUBTYPES. e 67
E. VARIABLE ARGUMENT OR PARAMETERLISTS..\ 68
VI CONCLUSIONS. e e e e e 69
A. INTEGRATION INTC A PROGRAMMING ENVIRONMENT. 69
B. EVALUATIONOF THE TYPECHECKER. 70

1. Kodiyak Deficiencies.o v ittt e 7
2. Kodiyak Benefits. i e 71
C. FUTUREWORK. it e i e e 72
1. Extensions of the current implementation. 72
2. Incremental Type Checking..72
D. GUIDELINES FOR EXTENDING KODIYAK.. 73
APPENDIX A-SPECGRAMMAR i i 74
APPENDIX B-CODE. e e 89
LMAKEFILE e e 89

vi

2. ATTRIB_PSG. M4 | . .t e e e e e e e e e 89
3 MYMAC M . e e e e e e e e e e e 95
4. MYCONST.MA | i s e e e e e e e e 97
S.HEAD. M4 e e e e e e e e e e 98
6. TALL M4 e e e e e e e e e e 98
T MY LIB.C e e e e e e e e e e e e 98
. SPEC M ., . . . e e e e e e e e e e e e e 109
APPENDIX C - SYNTACTICERROR PRODUCTIONS. 174
APPENDIX D- TYPECHECKER ATTRIBUTES v.... 200
REFERENCES it i e e e e e e e e e e e e e 203
BIBLIOGRAPHY ot e e e e e e e e e 205
INITIAL DISTRIBUTION LIST e e i e i 207
vii

2.1
22
23
24
2.5
2.6
27
2.8
2.9
2.10
2.11
2.12
2.13
3.1
3.2
33
3.4
35
3.6
3.7
3.8
3.9
3.10
4.1

LIST OF FIGURES
Sample Lexical Definitions 16
Lexical Section Operators. v v i it v ettt et 17
Regular Expressions with Definition Expansion 18
Sample Atribute Declarations 19
RuleTemplate. i i i i e 20
Attribute NamingandRuleConcepts 21
Kodiyak Operators. oot vt i vt i ettt e i it e e 22
Kodiyak "If. Then..Else"Construct. 23
Kodiyak FunCtionst v vt v ittt it en s 24
FunctionExample 30
MachineExample. 31
Immutable AbstractDataType 32
Mutable AbstractDataType 34
Conflicung Name Bindings e 40
Limiting Type Vistbility, 42
LocalizingaMap. 44
Name Layering it it 44
Result Values Transitive Dependency 45
PassingUpanAttribute0...... 49
Passing Down an Attribute to "n" Non-terminals. 49
Passing Over an Attribute to "n” Non-terminals. 50
Passing an Attribute in order to "n" Non-terminals. 50
Weaving an Attribute to "n" Non-terminals. 50
ExampleofaPattern., 54
viii

ACKNOWLEDGMENT

This thesis is dedicated to my loving wife, Sue. Thank you for all your patience and
understanding during the long hours devoted to its design, implementation and writing.

Most importantly, however, thank you for just being there and being you.

L. INTRODUCTION.

The field of Software Engineering is a growing area of interest in computer science.
Many systems are currently being developed, using various methodologies, to support
large scale software development. One of these systems uses the functional specification
language SPEC to define the syntax and semantics of these projects. SPEC is a language,
developed by Berzins [Ref. 1], for writing black-box specifications for the components of
the software system in the functional specification stage of software development. To
increase the reliability of this code a type checking tool has been developed to
semantically validate the various type declarations used in the specification. This thesis

describes the methodology used and the actual implementation of this type checker.

A. OBJECTIVES.

The primary objective of this thesis is to design and implement a language dependent
type checker for the specification language SPEC. Appendix A and [Ref. 1] contain a
listing of the grammar for the SPEC language. The code for the type checker is written
entirely as an attribute grammar. This code is then compiled using the Kodiyak
Application Generator, producing executable code.

It is also desired that the type checker be easily modifiable in the event that
extensions are incorporated into the SPEC language. By using an attribute grammar to

specify the program and an application generator to generate the code, the program can

be modified with relative ease. The efficiency of the code is not a limiting factor,

because optimizations may be coded at a later date.

The final objective is to abstract the process used to develop the type checker and
develop an algorithm for producing type checkers for other specification languages. This
algorithm will be a direct result of the insight gained from the design and implementation

of the SPEC language tool.

B. RESEARCH QUESTIONS.

There are two pertinent research questions for this thesis. First, and foremost, what
are the underlying issues in the design and implementation of a type checker for a
specification language using an application generator? What is the impact of these issues
on portability, readability, modifiability and efficiency of the code?

Finally, how would this type checker be best integrated into a programming
environment? What facilities must this programming environment provide? Should the

type checker be optimized to provide better execution speed?

C. THE HISTORY AND SUCCESSFUL APPLICATIONS OF ATTRIBUTE
GRAMMARS TO SIMILAR PROBLEMS.

Attribute grammars are frequently used for specifying the semantic meaning of
source programming languages. Additionally, with the aid of application generators,
these grammars have been used to generate compilers and other tools for the recognition

and transformation of programs coded in these source languages.

1. The Context Free Nature of SPEC--A Pretty Printer.

All language grammars are classified by the complexity of the productions that
produce that language. The Chomsky Heirarchy, named after Noam Chomsky, divides
languages into four classes--type O (unrestricted) grammars, type 1 (context sensitive)
grammars, type 2 (context free) grammars and type 3 (regular) grammars. Type 0
grammars contain the set of all languages, type 1 contains a subset of that, etc. Of these
four classes, type 3 (context free) and type 4 (regular) are of the most interest in
programming language design because they can be used to describe the structure and
basic symbols of a program. Most standard computer languages in use today can be
described with a context free grammar since efficient parsing algorithms are known for
this class of languages. The SPEC specification language is described using a context
free grammar.

A thesis recently completed at the Naval Postgraduate School [Ref. 2] developed
a program using the Kodiyak application generator and an attribute grammar to print
SPEC specifications in a properly formatted / indented manner. The Kodiyak application
generator is a tool for converting context free attribute grammars into an executable
program. This "Pretty Printer” program demonstrated that SPEC is indeed context free
because the Kodiyak tool could convert the attribute grammar representation into
executable code which formats SPEC specifications. The thesis also demonstrated that

attribute grammars are ~ feasible way to create tools for the SPEC language.

2. MSG.84 and MSG.85--A Translator for a Specification Language.

MSG.84 and MSG .85 are specification languages developed at the University of
Minnesota. They have been used extensively in software engineering classes for
specifying software systems. In the Spring of 1984, a translator was written to translate
these specifications into the Lisp-like DBL [Ref. 3] assertions. This translator, from
which the Kodiyak application generator evolved, revealed some design flaws in the
MSG language. These flaws were corrected and a translator now exists for the
conversions. Additionally, a reverse translator was written to convert the DBL assertions
produced into MSG. This process of translation and reverse translation insured that the
translation to DBL was "lossless” and that the semantic meaning of all the MSG

constructs was preserved.

3. The Design of a Compiler--Farrow 1984.

Attribute Grammars have long been championed as a promising basis for
compiler writing systems. Many different compiler-compilers such as Yacc [Ref. 4],
Linguist [Ref. 5] and Kodiyak [Ref. 6] have been developed. One of the major
drawbacks however, has been the inability of these compilers to compete in the
commercial market with those compilers produced by other means due to their memory
requirements and speed. The Pascal-86 compiler developed by Intel Corporation is based
on an attribute grammar and application generator. It was successfully marketed as a
production compiler and was developed in a two stage process. The first phase was
developed using the Linguist-86 application generator and performed semantic analysis,

storage allocation and translation to intermediate code. The second part of the compiler

takes the intermediate code produced by the semanticist unit and generated 8086
microprocessor object code. The compiler has been marketed succesfully and it was
noted that the development process was significantly enhanced due to the use of an

attribute grammar.

4. Syn--A Graphical Representation of Bachus Naur Form.

Syn is a translator developed with the Kodiyak application generator that
translates a grammar expressed in the Bachus Naur Form into directives in the PIC
graphics language. The translator required approximately two man-weeks of work to
implement by a user initially unfamiliar with the Kodiyak application generator [Ref. 6].
The significant time savings realized by the use of an application generator in the
development of this tool reaffirms that application generators are an effective tool for
developing large applications.

5. The Chameleon Architecture.

The Chameleon project [Ref. 7] is an ongoing project at Ohio State University
that is developing an architecture to support the specification, construction and use of
data translation tools. The architecture’s primary tool is an application generator that will
take attribute grammar specifications and produce the tools needed to translate the data.
An application generator was choosen as the primary tool in this architecture due to the

readability and ease of understanding of the attribute grammar specifications.

D. A SPECIFICATION TYPE CHECKER AND "CASE".

1. Description of CASE.

CASE 1is an acronym for Computer Aided Software Engineering, an area of
ongoing research at the Naval Postgraduate School. Some of the projects currently being
developed in this area include a Software Rapid Prototyping System, Syntax-directed
editors for SPEC and formatters for the SPEC language. Eventually, all of these tools
will be integrated into an environment to aid the software engineering process and
specifically ADA program development. It is also anticipated that this type checker and
its principles wili be integrated with a syntax directed editor to build a superior editing,
type checking tool.

2. Benefits for CASE.

A type checker would be an extremely valuable addition to any CASE
environment. Since it has been proven that many design errors manifest themselves as a
type inconsistency, the type checker would assist in the identification of errors that could

defeat the reliability of the specification.

. BACKGROUND.

A. TYPE CHECKER.
1. Definition.

A Type Checker is a tool used to validate the semantic accuracy of the uses and
declarations of name structures in a program. There are two types of type checkers
currently in use today. The kind of type checker used for a language is often dependent
on the features of that language. The first kind, a dynamic type checker, executes
concurrently with the program and checks the validity of dynamically declared variables
as they are encountered. Since this tool runs as part of the executable program, the
program performance is degraded and errors are reported during run time instead of
before the compile - link cycle.

The second kind of type checker is a static type checker. This tool takes as input
a file or multiple files containing the source program / specification and provides the user
with a report detailing any type inconsistencies that were discovered. It can be run before
a program is compiled and reports inconsistencies so that they may be corrected before
the compile - link cycle.

The process of validating the semantic accuracy of the structures in a program is a
multi-part process. The first part, called name analysis, entails finding the definition of
that name applicable to each use of the name. If there has been no definition of that

name, the type checker will either make a definition based on the name’s use or report an

error. The other two phases deal with obtaining the operator being used and confirming
that the results of the name analysis are indeed allowable with the given operator.
Additonally, a type checker must consider various language features such as operator
overloading, name scoping and the binding method used.
2. Scope Considerations.

The scope of a name is the portion of the program over which it may be used
[Ref. 8]. Many languages, called block structured languages, allow the nesting of various
names within themselves. The most recent occurence defining the currently available
definition of that name. Another constraint imposed by scope is whether or not a variable
is visible inside of the structures that are declared inside of it. Both of these constraints

and others must be considered in the design of the type checker.

B. ATTRIBUTE GRAMMARS.

1. Attribute Grammars.

Attribute grammars were introduced by Knuth [Ref. 9] and advocated as a means
of translating grammar specifications into executable code. They have been used
repeatedly to develop compilers, compiler-compilers (application generators) and other
useful tools. One of the most significant features of attribute grammars is their
readability. Attribute grammars are very similar to the Bachus-Naur form (BNF) of
representing the syntactic structure of a program and tends to be self-documenting since

they represent a relation between the syntax and semantics of the language.

a. Definition.

An attribute grammar is based upon a context-free grammar G = (N, T, P, Z)
and associates a set A(X) of attributes with each symbol, X, in the grammar G. The
context-free grammar is used to represent the syntactic structure of the language while
the attributes are used to represent context-sensitive (semantic) properties of the
language.

b. Synthesized and Inherited Attributes.

The attributes of an attribute grammar may be divided into two classes. The
first of these, synthesized attributes, are those attributes of symbols on the Left hand side
of a production that are derived from the return value of the elements on the right-hand
side of the production. Conversely, inherited attributes are those attributes of symbols
on the right hand side whose values are derived from the values of the attributes of the

symbols on the left hand side.

¢. Semantic Functions.

Each rule in an attribute grammar has semantic functions associated with it
that define the values of some attributes in the production in terms of other attributes in
the function. These functions resolve the actions that the application generator takes
upon recognizing the production associated with them and define the values of all

inherited and synthesized attributes.

2. Automatic Parsing of Attribute Grammars--Application Generators.
Application generators have many different uses. They have been used frequently

for the implementation of compilers, the verification of the context sensitive constraints

on languages and are becoming popular for the design and implementation of various
other tools. One of their most significant advantages is that they let the user customize
and reuse a general software design easily.

a. Definition and Overview.

Application generators are tools that produce executable code from a grammar
specification. The executable program produced will model the semantic meaning of the
grammar specification precisely. The application generator consists of two parts, a
variant part and an invariant part. The invariant part consists of fixed assumptions about
the domain or implementation such as the source language. The variant part of the
application generator corresponds to the attribute grammar specification of the system
that is to be produced.

The process of using the application generator begins with the attribute
grammar specification. This specification is generally simpler, in both syntax and
semantics than the programming language it specifies. Acting much like a language
compiler, the application generator takes this specification and produces code in some
invariant language (e.g., "C") which is then compiled with a standard compiler to
produce the executable application. An end-user may then take this executable
application and provide it with input from which the application will produce whatever
the original specification specified.

There are many different considerations in the choice of an application
generator for a specific task. The first and foremost of these is if the application

generator can perform the task desired. Other considereations include what built-in types

10

and operators are available in the appilications generator, the readability of the
specification language (attribute grammar) used by the tool, the availability of the
generator itself and the attribute evaluation method.

b. The Semantic Tree.

The basic principle of operation behind an application generator and its
associated attribute grammar is that any program can be represented by a semantic tree.
This tree will contain nodes, the interior ones representing productions and the leaves
representing terminal symbols in the target language. Associated with each node is it’s
attributes.

¢. Semantic Analysis.

The process of evaluating each node in the semantic tree is called semantic
analysis. As the attributes of each node are evaluated, the semantic functions are
executed and any side-effects associated with them are performed. Different algorithms
have been derived for resolving the attributes in the semantic tree and most of them have
been implemented in at least one application generator. The choice of the algorithm
depends on the properties of the attribute grammar and the qualities desired in the
resultant product [Ref. 6]. To ensure that the translator produced by the application
generator performs exactly as desired, it is imperative that the method used to evaluate
the attributes be understood.

d. Advantages and Disadvantages.
Application generators produce tools that are more reliable than a conventially

coded tool because of their very nature. Since it accepts a specification of the tool to be

11

produced and uses well-known techniques, it is less likely to accept syntactically
incorrect input and generate unexpected output or terminate abnormally [Ref. 6]. Since
there is a close link between the syntax and semantics of the specification, the volume of
code required is reduced and it is more repairable. The application generator tends to be
self-documenting because its source code allows users to quickly determine the syntactic
requirements of programs. If an application generator is constructed properly it can be
very portable. Typically it can be written in its own language and it produces an
appropriate, portable target language, the application generator can be transfered to other
computers with relative ease.

The most important advantage of an application generator is its ability to cut
down on the time and cost to build a tool with it. Since a programmer’s productivity is
largely constant in the number of lines of code produced per unit time [Ref. 10}, a tool
that generates a program equivalent to a high level language program with less actual
lines of code will increase productivity. Additionally, since there is generally a close
correlation between the Bachus-Naur representation of the grammar and the specification
input to the application generator, the time involved in the development of the program is
decreased as it is with most fourth generation languages [Ref. 11].

A major drawback of application generators is that since they are table driven,
they tend to produce executable code that is not as efficient as equivalent "hard-coded"”
tools. Additionally, since the value of the attributes used must be copied between
attributes so that these values may reach the root to be output, bulk is added to the

program’s specification. Both of these problems are currently being researched. Some

solutions have been put forth. To reduce the number of copy rules (and thus increase
readability), a macro preprocessor may be used. Additionally, research has proven that
hard-coding the tables used during the evaluation process tends to produce a speedup

factor of 6-10% [Ref. 12].

e. Existing Application Generators.

Many different application gonerators have been developed. Some of the
most popular include the HLP (Helsinki Language Processor) system [Ref. 13], Delta
[Ref. 14], Mug2 [Ref. 15], Aparse [Ref. 16] Gag [Ref. 17], YACC [Ref. 4], Linguist-86
[Ref. 5] and Kodiyak [Ref. 6]. Each uses a different algorithm for evaluating the

artributes of the semantic tree and accepts different classes of attribute grammars.

C. THE KODIYAK APPLICATION GENERATOR.

The Kodiyak application generator was developed at the University of Minnesota and
is intended for building prototype languages and translators. The specification describes
all aspects of translation: input scanning, parsing, semantic processing and output. It has
been used to build translators for other specification languages, text processing tools,

database query languages and a pretty printer for the SPEC language.

1. Justification for use.

Kodiyak is an exceptional language translator that integrates the functions of the
YACC [Ref. 4] parser generator and LEX [Ref. 18] scanner generator into a
comprehensive whole, hiding the procedural and interface details of these tools. Its
compact attribute grammar specification describes every aspect of the translation process,

produces portable "C" language code and then compiles that into executable code.

13

Additionally, Kodiyak can process it’s input through a macro-preprocessor allowing
repetitive code to be replaced by a single statement thus improving a programs’
readability. Kodiyak allows evaluation of the largest class of attribute grammars and
contains Built-in types capable of specifying symbol tables. Its many features,
capabilities, portability, and availability make it an ideal tool for the implementation of
this thesis.

2. A General Description of the Kodiyak Language.

All of the points covered in the following section come directly from Appendix A
of Herndon {Ref. 6] Kodiyak Program Layout. It is intended to describe the operation of
the Kodiyak translator in sufficient detail to facilitate understanding of the type checker
code. Itis not intended to be a detailed reference. If further or more detailed information

is needed it is recommended that Herndons’ doctoral dissertation [Ref. 6] be consulted.

a. Format.

Every Kodiyak program has three sections. The first section describes the
features of the lexical scanner that is to be used to translate the source text into tokens
and operator precedences and associativities for those tokens. The second section
declares the names and types of the attributes associated with each grammar symbol.
The third section contains the grammar and attribute equations that define the translation.

These sections are separated by a double percent symbol ("%%") on a line by itself.

b. Comments.
There are two forms of comments in Kodiyak. The first is the C and PL/I
style comment delimined by "/*" and "*/". The second is introduced by an exclamation

point "!" and continues to the end of the line.

¢. Lexical Scanner Section.

Each statement in the lexical section of a Kodiyak program describes the
terminal symbols of the translation in some way. The primary function of statements in
this section is to specify the terminal symbols of the grammar, and how input text is to be
transformed into these symbols. The secondary function of this section is to specify a set
of operator precedences to be used with the grammar.

The transformation of input text to terminal symbols is denoted by a regular
expression. Figure 2.1 shows examples of lexical definitions. These definitions are an
excellent sampling of the typical definitions. The first definition demonstrates the
general format of a lexical definition. The second definition demonstrates how a specific
string can be recognized and the third definition shows how a changeable string of text,
such as a variable name, may be recognized. The rules are examined in the way they are
listed, thus implying precedence. The first rule that is recognized will determine the

terminal symbol (token) that will be returned.

TERMINAL_NAME : REGULAR_EXPRESSION

! Format for a lexical definition.
! A Terminal_name is specified by the Regular_expression.

BEGIN ."BEGIN" | "begin"

! The terminal symbol BEGIN is recognized if either "BEGIN" or
! "begin” is scanned from the input

ID :[A-Za-z)[A-Za-20-9)"

! The terminal symbol ID is recognized if a string starting with
! an alphabetic character followed by zero or more alphanumeric
! characters is scanned from the input.

Figure 2.1
Sample Lexical Definitions.

Operator characters are an extremely important part of any regular expression.
They allow ways for specifying choices, repeating characters and ranges of characters.
All valid operator characters used in Kodiyak regular expressions are enumerated in
Figure 2.2. If you desire additional information on construction of regular expressions
and further examples, the original Lex documentation [Ref. 18) provides an authoritive

source.

16

tor bol Meaning

Delimiter between Token name and regular expression.

\ By preceding an operator character with the backslash, the
operator will be recognized as a text character.
. " Whatever is contained between a pair of quotes is text characters.
(] Indicates a character class. Any character between the brackets

will be recognized. The only operator symbols having meaning
between brackets are "-", "\" and "A",

A If the Caret Symbol appears outside of a set of brackets, the
string fcllowing it must appear at the beginning of a line
to be matched. If it appears as the first character after a
left bracket, it indicates that the resulting string is to be
complemented. (i.e. [*abc] matches everything except a,b or c.
+ Symbolizes an expression that is to be repeated one or more times.
* Symbolizes an expression that is to be repeated zero or more times.
i Indicates alternation. It may be interpreted verbally as an “or”.
0 Parenthesis are used for grouping.

) If the very last character of a regular expression is the dollar
sign, the expression will only be matched at the end of a line.

/ The forward slash between two regular expressions means that the
terminal symbol is only matched if the first regular expression
is immediately followed by the second regular expression.

? The question mark precedes an optional part of an expression.

- The dash operator specifies ranges.

The period operator matches any character.

{} Curly Braces specify either repetition or definition expansion.

Figure 2.2
Lexical Section Operators.

17

Kodiyak also provides ways to increase the readability of regular expressions.
By defining the basic lexical classes (digits, alphabetics, integers, etc.), the regular

expressions may be made more readable. Figure 2.3 provides an example of this feature.

%define Letter : [a-zA-Z]

%define Int : {Digit}+

%define Alphanum : [{Digit} {Leuer)]

COMMENT DN

NAME : {Letter} { Alphanum}*
Figure 2.3

Regular Expressions with Definition Expansion.

d. Autribute Declaration Section.

The attribute declaration section of a Kodiyak program declares the attributes
used in the program and their types. In this version of Kodiyak, no other statements may
be present in this section, though it is expected that declarations of constant functions and
external functions and procedures will eventually be allowed in this section.

Kodiyak supports two primitive data types for attributes: strings and integers.
Strings may have arbitrary length and may be concatenated to form longer strings. All
simple mathematical functions (i.e., addition, subtraction, multiplication and division)
may be applied to integers.

Kodiyak also supports higher order types. These types are called maps, and
define functions that may map any primitive type to any other type. Maps are extremely

flexible and important to the type checker. They can be mapped onto other maps to form

18

something similar to high level languages record structures. Figure 2.4 shows a some

sample attribute declarations.

ID (
type : string;
%rext : string;
%line int;
value tint;
}
EXPR |
type : string;
e_valid : string -> int;
}
Figure 2.4

Sample Attribute Declarations.

This figure declares that four attributes (type, %text, %line and value) are to
be associated with the grammar symbol ID and that two attributes (type and e_valid) are
to be associated with expressions (EXPR). Furthermore, attributes type and %text are
atributes that may take on string values; %line and value may take on integer values and
attribute e_valid is a map from a string ("true" or "false") to an integer value (1 or 0).

Figure 2.4 also demonstrates two very important concepts in Kodiyak. First,
since an identifier (ID) is normally a terminal symbol and an expression (EXPR) is a
non-terminal, both terminals and non-terminals can have attributes. Secondly, terminal
symbols can have two special, predefined attributes associated with them, "%text" and
"%line”. These attributes are initialized when the terminal symbol is recognized to be the

actual text scanned and the input line on which the text was found.

19

——ﬁ

e. The Attribute Grammar and Semantic Function Section.

The final section of a Kodiyak program defines the syntax and semantics of
the translation. It consists of a set of rules and sets of equations defining evaluation rules
for the attributes. There is one distinct start symbol for the rules and it is defined as the
symbol on the left hand side of the first rule in the grammar. This symbol is unique and
it may not appear on the right hand side of any rule in the grammar.

Rules in Kodiyak are defined in a form that is very similar to Bachus-Naur
Form (BNF). Figure 2.5 defines a rule which specifies that the non-terminal symbol
"non" will be recognized if the symbols "sym1", "sym2" and "sym3" appear in sequence.
Additionally, if the symbol "non" is recognized, the semantic functions defined between

the curly braces will be computed during the attribute evaluation process.

non: syml sym2 sym3
{

! semantic functions go here.

}

Figure 2.5
Rule Template.

The semantic functions must have a way of specifying exactly what attributes
are to be used during the de:ermination process. In Figure 2.6 one rule has been used to
demonstrate the three different ways of accessing the same attributes. In the first part of
the rule, a production allowing an expression to be recognized when two expressions are
separated by a plus ("+") sign is detailed. Associated with it is a semantic function

stating the value attribute of the expression on the left hand side of the rule (specified by

20

the "$$.value" notatic..) will be assigned the contents of the first expression’s value
atribute ("$1.value") added to the contents of the second expression’s value attribute
("$3.value”). The second and third notation show the exact same effect using
subscripting. In these examples, the subscript refers to each occurence of the non-
terminal. If a subscript is left out, as in the second notation, the non-terminal is assumed

1o refer to the non-terminal on the left hand side of the equation.

expr : expr '+’ expr

$3.value = $1.value + $3.value
}

| expr '-’ expr
{
expr.value = expr[2].value - expr[3].value

)

[expr "’ expr %prec multiply
{
expr{1].value = expr{2].value * expr{3].value
)

Figure 2.6
Attribute Naming and Rule Concepts.

Kodiyak has a rich set of operators. Besides the various arithmetic and string
operators detailed previously, it also provides nine logical operators. Figure 2.7

enumerates all of the operators that are presently available.

Operator Symbol Meaning.
b Multiplication
- Subtraction
/ Division
A Concatenation
(] Concatenation
< Less than
> Greater than
== Equal to
< Not equal to
<= Less than or equal to
>= Greater than or equal to
&& Logical and
] Logical Or
~ Logical negation
Figure 2.7

Kodiyak also provides a means of specifying a statement equivalent to the
"IF" construct used in high level languages. This construct has different syntax than most
languages, but is logically equivalent. Figure 2.8 demonstrates this construct using the

"expr" rule introduced in Figure 2.6.

Kodiyak Operators.

22

expr expr '/’ expr

{
$$.value = ($3.value <> 0
-> $1.value / $3.value
s2i("0")

Figure 2.8
Kodlyak "if..Then..Eise" Construct.

The above example assigns to the value attribute of the left part symbol the
contents of the first expression divided by the contents of the second expression if the
contents of the second expression are not equal to zero. If the second expression’s
contents are equal to zero, a value of 0 is assigned to the resultant expression’s "value”
attribute. The "else” ("#") clause also introduces another very important feature of
Kodiyak--built in functions. In Figure 2.8, the string to integer ("s2i") function was
called to convert a string value into an integer. Kodiyak’s standard functions are

enumerated in Figure 2.9.

23

Function Name

fmy(format,argl,...)

12s(integer)

$2i(string)

len(string)

inputfile(0)

outputfile(0)

basename(file:string)

%output(val:string)

%error(val:string)

%assert(condition:boolean,
message : string)

%outfile(name : string,
val : string)

%errfile(name : string,
val ; string)

Purpose

Generates a string in the format defined by the
"format” parameter, with argl,... substituted.

Converts an integer value to a string mptumtanon

Converts a character string to an integer.

Returns the length of a string.

Returns a string naming the input file.

Retumns a string naming the output file.

Retumns a copy of a string without dotted extension.

Val is written to the standard output

Val is written to the standard error.

If the value of condition is false, Kodiyak prints
message to the standard error file and terminates,

otherwise, the procedure does nothing.

Val is written onto the file "name”.
If name is null, val goes to stdout.

Val is written into the file "name”.
If name is Null, val goes to stderr.

Figure 2.9

Kodiyak Functions.

[f. Using the Kodiyak Translator.
The Kodiyak compiler creates and processes many files. Among them are
files that are processed by YACC, LEX, and by the C compiler. The Kodiyak
compilation process also depends upon two predefined files. The first is the Kodiyak

library. This contains functions for creating the parse tree, evaluating attributes,

24

concatenating strings, etc. The second file is the user library. This is a set of C functions
that the programmer may define for himself.

The command to invoke the Kodiyak translator is "k program.k" where
"program.k"” is the kodiyak program to be compiled. Files to be compiled should have
the extension ".k" or the compiler may not accept it. Kodiyak programs may also have
the extension ".m4" if the program is to be run through the macro-preprocessor prior to
Kodiyak compilation.

After the program is compiled, (assuming no errors are present), the resulting

object code will be in the file "program” in the current directory.

D. THE SPEC LANGUAGE.

SPEC is a formal language for writing black-box specifications for components of
software systems. SPEC uses the event model to define the black-box behavior of
proposed and external systems. Black-box specifications are developed for the external
interfaces of the system in the functional specification stage of software development,
and for the internal interfaces in the architectural design stage. Discussion of the event
model and the SPEC language, extracted from [Ref. 1:pp. 3.1-3.15], follows. Appendix

A and [Ref. 1] contain a listing of the grammar for the SPEC language.

1. The Event Model.
In the event model, computations are described in terms of events, modules and
messages. An event occurs when a message is received by a module at a particular

instant of time. A module is a black box that interacts with other modules only by

25

sending and receiving messages. A message is a data packet that is sent from one
module to another module.

Modules can be used to model external systems such as users and peripheral
hardware devices, as well as software components. A module has no visible internal
structure. The behavior of a module is specified by describing its interface. The
interface of a module consists of the kinds of events that can occur at the module along
with its response to each kind of event. Each kind of event corresponds to a different of
incoming message. Each response consists of the later events directly triggered by a
given initial event.

Any module accepts messages one at a time, in a well-defined order that can be
observed as a computation proceeds. Message transmission is assumed to be reliable.
Messages can have arbitrarily long and unpredictable transmission delays. The order of
messages arriving is normally not under control of the designer.

In the event model each module has its own local clock. The local clocks of
different modules are not necessarily synchronized with each other. Each event occurs at
a well-defined instant of time, which is the time at which the destination module receives
a message, according to its own local clock. The length of time between two events is
precisely defined if both events occur at the same place. The length of time between two
events at different locations can be estimated in terms of two readings of the same clock,
but this is only an approximation because of unpredictable message delays in obtaining

remote clock readings. The only kind of time interval meaningful in the event model is

26

the duration between two events. There is no way to distinguish between computation
delay and communication delay in the event model.

Each message has a sequence of zero or more data values associated with it. The
other attributes of a message are its name, its condition and its origin. All of these
attributes are single valued. Exceptions are modeled as messages by means of a
condition attribute, which can take on the values "normal” and "exception". The
condition of a message expressing a normal request for service is "normal”. The
condition of a message reporting an abnormal event somewhere is "exception”, in which
case the name of the message is the name of an exception condition.

The response of a module to a message is completely determined by the sequence
of messages received by the module since it was created. A module is mutable if the
response of the module to at least one message it accepts can depend on messages that
arrived before the most recent incoming message. A module is immutable if the response
of the module to every possible message is completely determined by the most recent
incoming message. Mutable modules behave as if they had internal states or memory,
while immutable modules behave like mathematical functions. A module is immutable if
and only if it is not mutable.

Each module has the potential of acting independently, so that there is natural
concurrency in a system consisting of many modules. Since events happen
instantaneously and the response of a module is not sensitive to anything but the
sequence of events at the module, the event module implies concurrent interactions with

a module cannot interfere with each other at the level of individual events. This non-

27

interference must be guaranteed by implementations which require a finite time interval
to trigger the responses to an event. The response of a module is under the control of the
designer.

In modeling concurrent systems it is sometimes necessary to specify atomic
transactions. Atomic transactions are non-interruptible sequences of events at a module.
Once a module starts an atomic transaction, it cannot accept any messages that are not
part of the transaction until it is complete. Atomic transactions are sometimes needed to
specify non-interference between concurrent sets of activities involving chains of
multiple events at the same module. Atomic transactions must be used with care because
they can lead to deadlocks if the protocols of the modules involved in a transaction are
not compatible with each other, and can lead to starvation if a transaction goes on
forever.

Modules can be used to model current and distributed systems, as well as systems
consisting of a single sequential process. The event model helps to expose the
paralleiism inherent in a problem, because the only time orderings specified are those
which are unavoidable and are agreed on by all observers.

Events can be triggered at absolute times. Such events are called temporal events.
Temporal events are the means by which modules can initiate actions that are not direct
responses to external stimuli. Formally a temporal event occurs when a module sends a
message to itself at a time determined by its local clock. Unless explicitly stated
otherwise, there may be an unpredictable delay between the time when the message is

sent and the time when it is received, just like for any other message.

28

2. The SPEC Language.

The SPEC language uses second order logic for the precise definition of the
desired behavior of modules. The Spec language provides a means for specifying the
behavior of three different types of modules:

(1) Functions

(2) State machines

(3) Types

Each of these types of modules is described in the following pages along with

examples of each type of module.

a. Functions.
Function modules are immutable and calculate functions on data types, where
"function"” is interpreted as in standard mathematics. Usually function modules provide
only a single service and hence accept anonymous messages. Figure 2.10 gives an

example of the specification for a square root function.

29

FUNCTION square_root { precision:real)
WHERE precision > 0.0

MESSAGE (x:real)

WHEN x>= 0.0

REPLY (y:real)

WHERE y >= 0.0 & approximates (y*y.x) .
OTHERWISE REPLY EXCEPTION imaginary_square_root

CONCEPT approximates (rl r2:real)
--True if r1 is a sufficiently accurate
--approximating of r2.
--The precision is relative rather than absolute
VALUE (b:boolean)
WHERE b<=> abs ((r] - 12)/r2) <= precision
END

Note: "--" introduces a comment and all keywords
in Spec appear in all capital letters

Figure 2.10
Function Example.

b. State Machines.

A machine is a module with an internal state, i.e., machines are mutable
modules. Figure 2.11 shows an example of a machine. The behavior of the machines is
described in terms of a conceptual model of its state, rather than directly in terms of the

messages that arrived in the past, because descriptions in terms of such a conceptual

model are usually shorter and easier to read.

MACHINE inventory
--assumes that shipping and supplier are other modules
STATE (stock:map {item,integer})
INVARIANT ALL (i:item::stock[1] >= 0)
INTTIALLY ALL (i:item::stock[1] = 0)

MESSAGE receive (i:item,q:integer)
--Process a shipment from a supplier.
WHEN q>0
TRANSITION stock{1]=*stack[i] + q
--Delayed responses to backorders are not shown.
OTHERWISE REPLY EXCEPTION empty_shipment

MESSAGE order (io:item,qo:integer)
--Process an order from a customer.
WHEN 0 < go <= stock[i0]
SEND ship (is:item, gs:integer) TO shipping
WHERE is = i0, gs = g0
TRANSITON stock([io} + qo = *stock[io]
WHEN 0 < qo > stock[io]
SEND ship (is:item, gs:integer) TO shipping
WHERE is = is, gs = stock[io]
SEND back_order (ib:item, gb:integer) TO supplier
WHERE ib = i0, gb + gs = qo
TRANSITION stock[io} =0
OTHERWISE REPLY EXCEPTION empty_order
END

Figure 2.11
Machine Example.

¢. Types

A type module defines an abstract data type. An abstract data type provides

many services therefore the messages of a type module usually have a name. An abstract

data type consists of a set of instances and a set of primitive operations involving the

instances. The instances are the individual data objects belonging to the type. The

instances of an abstract data type are black boxes. The properties of the instances are not

visible directly, and can only be observed and influenced by means of the primitive

31

operations. The properties of an instance are determined by the primitive.operation that
created the instance and the sequence of primitive operations applied after it was created.

Data types are either mutable or immutable. For immutable types the set of
instances and the properties of each instance are fixed. Operations producing instances
of the type are viewed as selecting members of this fixed set. Figure 2.12 is an example

of an immutable abstract data type.

TYPE rational

INHERIT equality {rational}

MODEL (num den:integer)

INVARIANT ALL (r:rational::r.den ~= 0)

MESSAGE ratio (num den:integer)
WHEN den ~= 0
REPLY (r:rational)
WHERE r.num = num, r.den = den
OTHERWISE REPLY EXCEPTION zero_denominator

MESSAGE add (x,y:rational) OPERATOR +

REPLY (r:rational)

WHERE r.num = x.num*y.den+y.num*x.den,
r.den = x.den*y.den

MESSAGE multiply (x y:rational) OPERATOR *
REPLY (r:rational)
WHERE r.num = x.num*y.num, r.den = x.den*y.den

MESSAGE equal (x y:rational) OPERATOR =

REPLY (b:boolean)

WHERE b <=> (x.num*y.den = y.num*x.den)
END

Figure 2.12
Immutable Abstract Data Type.

The state of a mutable data type consists of a set of instances which have

internal states. The initial state of a mutable type is an empty set of instances. Mutable

32

types have operations for creating new instances, and usually also operations that can
change the properties of an instance once it has been created. An example of a mutable
abstract data type with immutable instances is the set of unique identifiers for the objects
in a database.

An instance of a mutable data type is very similar to a state machine, except
that the state machine is implicitly created at the start of the computation, while the
instances of a mutable data type are created as a computation proceeds. A state machine
has exactly one instance, while a mutable data type can have any number of instances.

Figure 2.13 is an example of a specification of a mutable data type.

33

TYPE queue {t:type)
INHERIT mutable {queue}

--Inherit definitions of the concepts new and defined.
MODEL (e:sequence)

-The front of the queue is at the right end.
INVARIANT we

--Any sequence is a valid model for a queue.

MESSAGE create
--A newly created empty queue.

REPLY (q:queue(t}) WHERE q.e =[]
TRANSITION new(q)

MESSAGE enqueue (x:t, g:queue{t})
--Add x to the back of the queue.
TRANSITION gq.e = append([x], *q.¢)

MESSAGE dequeue (q:queue(t})
--Remove and return the front element of the queue.
WHEN not_empty (@)
REPLY (x:t)
TRANSITION *q.e = append (q.¢,[x])
OTHERWISE REPLY EXCEPTION queue_underflow

MESSAGE not_empty (q:queue(t})
--True if q is not empty.

REPLY (b:boolean) WHERE b <=> (q.e ~= [])
END

Figure 2.13
Mutable Abstract Data Type.

IIL. SYSTEM DESIGN.

The first stage of the design effort was to analyze the requirements and obtain a better
understanding of the SPEC language. To facilitate this process, a language reference
manual [Ref. 19] was developed. This language reference manual describes many of the
finer points in the SPEC language and provided a firm starting point for the type checker.
It assisted in illuminating many of the issues that would have to be addressed in the

design and capabilities that the type checker would have to encompass.

A. SPEC LANGUAGE TYPE CONSISTENCY CONSTRAINTS.
Like most computer languages, SPEC has many constraints on the naming and use of
various operands. These constraints were derived from [Ref. 1] and [Ref. 19].
1. SPEC Language Semantic Issues.
a. Definitions.

e Descendant of a Module: A module is considered to be a descendant of another
module if it explicitely inherits the traits of that module using an INHERIT
clause.

® Local: A name is local if it is only visible to the module / entity in which it is
contained.

¢ Global: A name is global if it is visible to the entire specification.
¢ Signature: The signature of a name is the ordered set consisting of the actual
name, the arguments associated with that name and the types associated with the

arguments.

¢ Boolean Value: A value that may only take on the logical values of "true” or
"false".

35

Unique Definition Constraint: Only one definition of a concept or message
with the same signature is allowed to be visible in any of the modules in a well
formed specification.

Definition Consistency Constraint: Some concepts may have to be renamed
before they can be imported or inherited. :

Import Consistency Contraint: A concept can be imported from another
module only if the other module defines and EXPORT’s the concept.

Instance Consistency Constraint: Requires that the actual parameters of an
instance of a generic module must satisfy any constraints mentioned in the
WHERE clause after the generic parameter declaration.

Input Coverage Constraint: Requires every concept to have proper values for
all possible inputs satisfying the precondition. Also, the WHERE and
TRANSITION clauses of each message must have proper values for all states
and input values satisfying the associated preconditions.

Congruence Consistency Constraint: A property of MESSAGES and
CONCEPTS that is true if they mean the same thing for all equivalent conceptual
representations.

Completed Specification: A specification that meets all of the Constraints and
scoping requirements of the SPEC language and contains no instances of the not
yet defined clause ("?7").

b. Scoping.

The names of MODULES are global and unique. No module name may be
redeclared at any other point in the specification.

The names of MESSAGES and EXCEPTIONS are global.

The names of CONCEPTS are local to the module in which they are defined.
Concepts may be inherited by another module with the use of an INHERIT
clause in that module. A Concept may only be associated with other modules if:

(a) It is explicitly exported with an EXPORT clause and

(b) It is explicitly imported into the module it is to be associated with by an
IMPORT clause.

The FORMAL PARAMETERS of a generic module are visible in the module in
which these names are defined.

36

The component names of the MODEL of a type are visible in the module in
which the names are defined and in any descendants of that module.

The component name of the STATE of a machine are visible in the module in
which the names are defined and in any-descendants of that module.

The FORMAL PARAMETERS of a message are visible to the entire
specification of that message.

The FORMAL ARGUMENTS of a message are visible to the entire specification
of that message.

The FORMAL ARGUMENTS of a reply clause are visible from their declaration
to the end of the when or otherwise clause in which they are declared. If no
when or otherwise clause exists, they are visible until the end of the message
specification.

The FORMAL ARGUMENTS of a send clause are visible from their declaration
to the end of the when or otherwise clause in which they are declared. If no
when or otherwise clause exists, they are visible until the end of the message
specification.

The FORMAL ARGUMENTS of a generate clause are visible from their
declaration to the end of the when or otherwise clause in which they are declared.
If no when or otherwise clause exists, they are visible until the end of the
message specification.

The visibility of LOCAL VARIABLES declared in a CHOOSE clause extends
from their declaration to the end of the when or otherwise clause in which they
are declared. If no when or otherwise clause exists, they are visible until the end
of the message specification.

The scope of variables bound to a quantifier extends from the "(" following the
name of the quantifier to the matching ")".

All identifiers in SPEC must fall into one of the above categories.
¢. Naming Constraints.

The name of a module is considered unique if there is only one module defined
with its given name.

The name of a message is considered unique if there is only one occurrence of
that name with it’s specific signature within its scope.

37

The operator of a message is considered unique if there is only one occurrence of
that operator with the specific signature of its corresponding name within the
operators scope.

The name of a concept is considered unique if there is no other definition of that
name with the same signature within the name’S scope.

Any other name construct is considered unique if there is no other occurence of
that name within its defined scope.

d. Type Consistency Constraints.

An operation which is referenced to a specific module with the "@module”
qualifier must be defined (or inherited by) the referenced module.

If the "@module” qualifier is not used to clarify the use of an operator or
message name, there must be exactly one candidate operation matching the types
of the actual parameters.

Arguments and Parameters in SPEC are specified by position. If a value or name
is given for the arguments or parameters used in a call to a construct (the actual
parameters), the types of the names or value must match the corresponding
formal parameters or arguments.

There must be a unique correspondence between the actual parameters and the
formal parameters. For example, if the $ operator is used to specify a variable
number of parameters in the formal definition, it must be determinable as to
which actual parameters the $ will be bound.

An expression following a WHERE clause must evaluate to a boolean value.
An expression following a WHEN clause must evaluate to a boolean value.

An expression following a SUCH THAT clause must evaluate to a boolean
value.

An expression following an IF or ELSE_IF clause must evaluate to a boolean
value.

38

The types of the expression following the "::" specification of a quantifier must
match the requirements of the quantifier. Predefined constraints are:

ALL Boolean
SOME Boolean
NUMBER Any type with an equality operator.

SUM Any type with a commutative & associative "+" operation.

PRODUCT Any type with a commutative & associative "*" operation.

UNION Any type with a commutative & associative union.
INTERSECT. Any type with a commutative & associative intersection.
MAXIMUM Any type with a partial order "<=" operation.
MINIMUM Any type with a partial order "<=" operation.

The expressions on either side of a conditional operator must be of the same
type.

All of the normal REPLY clauses of the same message must be of the same type.

All of the REPLY EXCEPTION clauses with the same exception condition in the
same message must be of the same type.

The definition of each message used in an expression must not contain any
TRANSITION clauses.

If a SPEC predefined operator is overloaded, the overloading message must have
the same number of arguments as the defined operator in the SPEC library. For
example, the "+" operator cannot be overloaded to a message that requires three
arguments.

B. CONCEPTUAL MODEL.

1. Requirements.

The SPEC type consistency constraints identified many different requirements for

the type checker. The more distinct requirements are:

When a name is used in the specification, all defined argument lists for that name
must be searched to determine the correct signature for that usage. If more than
one possible matching signature is found, an error message must be reported
listing all the conflicting usages. Figure 3.1 shows three skeleton modules. In
the first two modules define two types, "nat" and "integer". They also define two
messages, "add”, each of which is a legal definition within its scope. The third
module uses the "add"” message. During the type checking process, an error must

39

be reported in function "does_something" stating that more than one possible
signature match for the "add" message exists and reporting the conflicting
bindings.

TYPE nat
MODEL
INVARIANT true

MESSAGE add (n : nat, i : integer)
REPLY (i2: integer) WHERE i2=i+n
END

TYPE integer
MODEL
INVARIANT true

MESSAGE add (n: nat, i : integer)
REPLY (i2 : integer) WHERE 2 =i+ n
END

FUNCTION does_something
MESSAGE (i : integer, n : nat)
REPLY (i2 : integer) WHERE i2 = add(n,i)
END

Figure 3.1
Conflicting Name Bindings.

A data structure must be available at all times which retains the names, signature,
operator(s), module name, return type and parameters for each message in the
specification.

A data structure must be available during importation which retains the names,
signature, module name, return type and parameters for each exported concept in
the specification.

During name analysis, all module names must be examined prior to the
examination of any other name. The examination of message names, concept
names, a module’s formal parameters and the state or model clause variables
should then be accomplished in order.

Any variable names or types declared within any other SPEC structure are visible
within that structure only subject to defined visibility rules.

40

[

¢ The type of every visible name must be immediately determinable during the
type checking process to enable type consistency checking.

¢ Every name must be unique according to its scope and signature. If a name is
not unique, an error must be reported.

e All the formal arguments and parameters of a name must be retained in full (i.e.,
the "type" and the name saved) in order to facilitate proper checking of variable
argument or parameter lists. In this way, if the name is bound within the actual
arguments or parameters, it is determinable which formal argument or parameter
is associated with that name.

2. Model.

Based on these requirements, a design was developed that provided an efficient
solution. The cornerstone of this design was the means in which a signature lookup was
accomplished. The best solution this research found was to have a map from a name to a
set of tuples. Each tuple in this set represents one distinct overloading of the name in the
domain of the map. By searching this set of tuples, the specific overloading which is
being used can be found.

To provide an efficient means for information lookup, each tuple in this set
contains a list and a number. The list is an ordered list of tuples and each tuple in the list
contains information on one of the formal arguments in the signature. The number is a
value or cross reference that when "looked up” in the symbol table provides immediate
access to all information concerning that symbol.

The tuple representing one of the formal arguments or formal parameters consists
of two elements--the name of that element and its "type". The "type" that is placed in
this second element is derived from a map which has a domain consisting of all the types

that are visible at that point and a range consisting of a translated text for that specific

4]

type. The translated text is simply a modified version of the actual type name. If a type
name belongs to a concept, it is local to the current module, so an "@" symbol is
appended to the name followed by the current module’s name. If the type name belon.gs
to a module, the range matches the domain. In this way, if a concept is defined
differently in two different modules the "relationships” (e.g., messages, etc.) between the
modules must use the concept they were defined with and not the corresponding concept
in the other module. In Figure 3.2 the two types of entries permitted in the "type” map

and the module that defines them are shown.

TYPE complex
MODEL (re : real, im ; imaginary_part)
INVARIANT

CONCEPT imaginary_part : type
WHERE imaginary_part = real

END

Actual Name Translated equivalent.
complex complex

imaginary_part imaginary_part@complex

Figure 3.2
Limiting Type Visibliity.

Based on these features, the symbol table becomes a map from the cross reference
value to a tuple. This tuple contains the required information for each symbol, its
parameters, class, textual name and type. The parameters element is a tuple which

represents the formal parameters (if any) of the symbol. The class element contains some

42

—7

representation of the class (function, message, concept, etc.) that the symbol belongs to,
and the textual name element contains the actual text of the symbol (used for error
reporting).

While determining the conceptual model of the last element of this tuple, it was

noted that each symbol that would be placed in the symbol table was either a variable, a

concept or message or a module name. Interestingly enough, this indicated that the type
element of the tuple contained in the domain could have a dual purpose. If the symbol
was a variable or "non-function" concept (a concept without a VALUE clause), the actual
type of that name could be placed in that field. If the symbol is a message or concept
with a VALUE clause, the type that the symbol returns could be placed in that field; and
if the symbol was a module name, no information needed to be placed in that field.

Actually building these tables presented another problem. Due to the declaration
requirement that a module name could not be redeclared and that concept and message
names are visible throughout the entire module they are defined in, the necessary "name"
table has to be built in three "layers". In the first layer, all of the module names are
collected into a table and any redeclarations are identified. These module names are then
passed down into the second layer during which all message and concept names are
added to the table. Additionally, if a message has an operator associated with it, the
operator can be treated as a name unto itself, with the same arguments as the message
and stored in the table accordingly.

When this table is returned to the top of the semantic tree, one additional level of

indirection is added to it so that a name declared in one module doesn’t "overwrite" the

43

identical name declared in a different module. This level of indirection is added by
taking the original map and making it the range of a new map whose domain is the

module name. Figure 3.3 shows this process.

before: string -> string

after: module_name -> string -> string

Figure 3.3
Localizing a Map.

The final layer in the name analysis process takes this table produced by the
second layer and "cuts" it within each module so that only those names defined in that
module are passed back down. All other names that are encountered within that module
are then added to it, according to the scope rules of the SPEC language. With the tables
being "manuevered” through the semantic tree during this layer, the type consistency
analysis can be performed. Additionally, if the tables produced by the second layer are
passed down the tree also, these tables can be used to verify whether a message exists or

doesn’t exist in another module. Figure 3.4 demonstrates this name layering process.

Layer Contains Structure
1 nothing, yet. name -> tuple
2 module names name -> tuple
3 modules, concepts, messages module name -> {(name -> tuple)
3 modules, concepts, messages name -> tuple
this map only has locals.
Figure 3.4

Name Layering.

With these tables, the type consistency analysis simplifies to two distinct parts.
The first part involves obtaining the correct symbol from the tables produced in the
layering process. To determine that only one unique possibility exists for this symbol,
both of the layer three tables must be searched--the local table and the table which
contains all the symbols defined in other modules. However, in the second table, only
messages need be examined.

The second part of the type consistency analysis involves checking the actual type
of the symbol. Ideally, this should only be a "lookup” in the symbol table, but since a
message or concept may have a value that is transitively dependent on another message
or concept,a routine that recursively resolves the type must be performed. Figure 3.5
shows a two dimensional transitive dependency situation. The first message, message_1,
has a resultant value that is dependent upon a concept, dimension_2. Theoretically, this

transitivity could be repeated extensively.

MESSAGE message_1(...)
REPLY dimension_2 (...)

CONCEPT dimension_2 (...)
VALUE (...)

Figure 3.5
Result Values Transitive Dependency.

To conclude the process, the type is passed up to the next higher level of the
semantic tree and used to resolve that level. Additionally, any errors encountered are

concatenated onto the error messages from the "children" of the current level and also

45

passed up. When the uppermost level of the semantic tree receives these error messages
from its children, the type checking process is completed and the errors can be reported

to the user.

C. DESIGN CONVENTIONS.

In an effort to increase the readability of the source code, it was decided that the M4
macro preprocessor would be used and a stardardized attribute naming schema adopted.
The attribute naming schema assisted in cutting down the source code size, but the M4
macro preprocessor helped significantly more. The M4 preprocessor "shrunk” the actual
code size almost 50% (3926 lines prior to expansion, 7591 after) by coalescing multiple

source code lines into one line of M4 code.

1. Attribute Naming.

The primary rule followed in the naming of all attributes was to make the name as
descriptive as possible concerning the purpose of the attribute, without "exploding” the
size of the source code. Additionally, each attribute is appended wnh an underbar ()
followed by a descriptive character (s or i) which signifies the use of the attribute
(synthesized or inherited). Some sample names include "module_name_s",
"visible_types_i" and "ip_stbl_s". A complete listing of all descriptive names is
contained in Appendix D.

Certain abbrcviations were adopted to assist in the naming, without making the

name too long. Some of the more common abbreviations include:

46

ip : signifies that the attribute is currently "in the process” of being built. The
information currently contained in this attribute is not reliable for any other purpose than
building the final attribute and thus should not be used for any other purpose.

Iclzd : denotes that a table is "localized”. A localized table is normally a map
with a domain consisting of a string and the range containing another map. The string in
the domain string will always be a module name or a scope related value (such as
"GLOBAL_TYPE_NAMES" in myconst.m4).

stbl : symbol table. Any attribute name prefixed by this word denotes an attribute
that is part of the symbol table group of attributes (e.g., stbl_names).

xref : cross reference. Any attribute containing this abbreviation has a range
which contains cross reference information in it (normally within a tuple). Many times, a
prefix is appended to this word (mxref or mcmxref) to assist in the distinction of the
attributes’ purpose. Two of the more common attributes using this abbreviation are
mxref (module cross reference) and memxref (module-concept-message cross reference).

env : environment. This abbreviation is commonly used in attributes that are
passed down to non-terminals to "inform" the non-terminal of the environment within
which it is currently being utilized.

2. M4 Macro Abstractions,
The actual M4 macro definitions are contained in three different files--

"attrib_psg.m4", "mymac.m4" and "myconst.m4". Two additional M4 files were used in

47

this design (head.m4 and tail.m4) but they simply contain certain M4 commands that are
required so that M4 will function properly with the Kodiyak tool. All of the M4 files are
enumerated in Appendix 2.

a. Attrib_psg.md4.

This file contains all the M4 macros that are associated with a general
attribute passing capability. They could be used in any Kodiyak program and are not at
all specific to the type checker. Most of these macros have been derived from the
"macros.m4” file developed by Robert Herndon and promulgated with the Kodiyak
compiler. Some modifications were made to the actual definitions for the purpose of
standardization, however. Most of these modifications involved changing a macro’s
name to more accurately reflect how many attributes were being passed and how many
non-terminals these attributes are passed to.

There are six actual groups of macros within this file. Each group is
characterized by a descriptive name, followed by two integer values separated by an
underbar. The name details the purpose of the macro and the integer values represent the
number of non-terminals being passed followed by the number of attributes affected
(e.g., passio2_4--pass in order to two non-terminals, four attributes). The arguments for
the macro follow in the same order as the integer numbers--non-terminals first, then
attributes. The six names used for these macros are:

Passup : Pass up an attribute from a child non-terminal ($1, etc.) to the parent

non-terminal ($$). Figure 3.6 graphically depicts this class.

48

Parent Non-terminal.

Child Non-terminal

Figure 3.6
Passing Up an Attribute.

Passdn : As shown in Figure 3.7, an attribute is passed down from the parent

non-terminal to child non-terminal(s).

Parent Non-terminal.
Child-1 Child-2 Child-3 Child-4 Child-n
Figure 3.7

Passing Down an Attribute to "n" Non-terminals.

Passovr : Figure 3.8 shows how this macro "passes over" an attribute from
one non-terminal to another. There are two variations of the passovr macro. The first
variation is simply a "passovr" from one non-terminal to another (passovr_1). The
second, which is a logical extension of the first, passes the specified number of attributes
to more than one non-terminal from only a single non-terminal. To vividly display this
significant difference from the weave and passio macros, the naming of this variation is
slightly different from the standarc ~aming. An "x" was placed between the first integer
(signifying number of non-terminals) and the underbar. The "x" is best interpreted as a
"times”. Thus, the macro looks like "passovr2x_1" which means "passovr two times, one

attribute”.

49

Parent Non-terminal.,

NN Y

Child-1 Child-2 Child-3 Child4 Child-n

Figure 3.8
Passing Over an Attrﬂ:ute to "n” Non-terminals.

Passio : Pass an attribute in order from the parent non-terminal, through the
specified children non-terminals and back to the parent. Figure 3.9 shows this commonly

used macro.

Parent Non-terminal. ¢
18 N Wf BRYR \

Chl]d 1 Child-2 Child4 Child-n

Figure 3.9
Passing an Attribute In order to "n" Non-terminals.

Weave : Weave an attribute from a child non-terminal, through other
specified children non-terminals and into a non-terminal. As shown in Figure 3.10, this

macro is similar to Passio, except the parent non-terminal is not affected.

Parent Non-terminal.

- N/ 74 N/ R
Child-1 Child-2 Child-3 Child4 Child-n
Figure 3.10

Weaving an Attribute to “n" Non-terminals.

cat...up : Concatenate "..." up to the parent non-terminal from the children.

The "..." may be either the abbreviation "str" meaning string or "map" meaning map.

50

—

b. Mymac.md.
This file contains macro definitions that are unique to the type checker. Each
of these definitions provides a shorthand method of expressing multiple lines of Kodiyak

code and greatly simplifies the readability of the source. They can be logically divided

into three groups.
(1) Declaration Group.
The declaration group consists of four different macros, which are used in the

attribute definition section of the Kodiyak source. They are designed to make each non-

terminal’s defined attribute list more readable.

(2) Symbol and Visibility Tables Group.

These macres are defined to assist in the attribute evaluation section of the
Kodiyak source. They primarily provide simple statements for passing the symbol (or
visibility) tables down from one non-terminal to another.

(3) Attribute Evaluation Group.

This group of macros is also used in the attribute evaluation section of the
Kodiyak source. They simplify the amount of code used to express the equations to

"make a declaration”, etc.

¢. Myconst.m4.
This M4 definition file contains the various symbolic constants used
throughout the Kodiyak source. Some slight variations of these constants are also used in
the C language file mylib.c and the correlation between them is vital to the type checker.

All relationships are detailed as comments in the mylib.c file.

51

IV. IMPLEMENTATION.

A. SEMANTIC INFORMATION STORAGE STRUCTURES.

To properly type check the SPEC source code, various tables were required. These
tables contained information relevant to each module, such as message names,
arguments, parameters and result types. The primary requirement that necessitated the
use of these tables was the "non-block" structured nature of certain SPEC constructs. For
example, when the information regarding a specific message is looked up, a "match"
must be searched for in the current module and all type modules corresponding to an
argument type of the message. These type modules may or may not have been
previously declared. Another of the non-block structured SPEC structures is the fact that
concept names are visible throughout the entire module in which they are enclosed, thus
requiring, at the very least, that the module be "passed over" twice--once to obtain the

information about concepts, and the second time to type check the rest of the module.

1. Module Types.
The module types table contains a listing of all the valid type names that are
visible in a module that must be accessible immediately upon entering the module (e.g.,
concepts and module types). This table is especially important due to the fact that all

other tables depend upon 1t. Whenever a type is stored, its “translation” in this table is

52

used, vice its actual name. The translation represents a globally unique name for the
type. This permits the localizing of types that are truly local to the module such as
concepts.

The table is structured as a map from strings to a map of strings to strings. The
domain string consists of the module name, the domain string of the range map
containing the actual name of the type (e.g., real) and the range string containing the
translation that will be used to reference the type. To symbolize local names, the current
module name 1is prefixed by an "@" symbol and the actual local name
(local_name@module_name).

One of the most important uses of this table is to select appropriate portions (or
“cuts”) from it when a module is entered, and place these “cuts” in the visible types table.
This table is then used throughout the module.

2. Symbol Table.

Due to the lack of wuple structures in the Kodiyak language, the symbol table
actually consisted of five different tables. Each of these tables has a unique purpose.
The primary table, called the symbol table, consists of a map from strings to a map
consisting of strings to strings. The primary domain of the map contains module names.
The domain of the "range map" consists of the symbol’s name and the range of this map
contains a group (or variant tuple) of patterns. Each pattern is separated by a delimiter
(PATTERN_DELIMITER).

A pattern is a tuple consisting of a variant sized tuple of formal or actual

arguments, and a cross reference value. Each element in the formal or actual arguments

53

"subtuple” is separated by a delimiter (ELEMENT_DELIMITER) and this subtuple is
separated from the cross reference value by another delimiter (XREF_DELIMITER).
Figure 4.1 shows the format for a pattern and a pattern string. In this Figure, the
ELEMENT_DELIMITER is represented by -, the XREF_DELIMITER by & and the

PATTERN_DELIMITER by e.

pattern
argjeargysargye ... sarg, #xref_value

pattemn string
patiern; épatiern) ¢ patiern3 ¢ ... patterny

Figure 4.1
Example of a Pattern

The cross reference value is of extreme importance to the type checker. It is used
in the rest of the maps which contain the symbol table information to access the
information. Without this cross reference value, much of the information required could

not be accessed properly.

a. Textual Names.
This is the first table containing the symbol table information, other than the
actual symbol table. Its structure is a map from integers to strings. The domain of the
map contains the cross reference value and the range contains the actual text of the name

of that symbol. This information is commonly used in error messages.

b. Parameters.
This table contains the formal parameters associated with a symbol. Its

structure is a map with a domain of integers and a range of strings. The domain is the

54

cross reference value of the symbol and the range is a string consisting of a concatenation
of all the parameters of the symbol and their types. Each element in this concatenation is
separated by a delimiter and within each element, the element’s name and its type are

separated by a different delimiter.

c. Results.

The results table is a map from an integer cross reference value to a string
which contains the result type of the symbol. A result type can be interpreted in two
different ways. In the case of a message or concept with a VALUE clause, the result type
contains the type of the reply or value. If the symbol is a variable or variable-type
concept, the result type contains the type of the variable.

Since the result table must be built prior to its use in the actual type
consistency checking, if the type to be placed in the table is a message or concept call,
the actual text of the message or concept call is prefixed by a special symbol, which I call
the reference symbol, and placed in the range of the map. This presents the requirement
that a C language function be used to assist in resolving the type of any construct, since
this result table value may be transitively dependent on other values. This C language
routine, which I have named "Resolve_Type", will recursively analyze the result types of
different symbols until a result type is found that is not preceeded by the reference

symbol.

d. Classes.
This table is used to uniquely identify the classes of various names. It is

extremely important and allows checking of a name to determine if it is a message,

55

module, concept or variable name. Each different class has a unique value and these
values are detailed in the file "myconst.m4", which is listed in Appendix B.
3. Visibility Tables.

The two visibility tables used by the type checker address the block structured
constructs in the SPEC language. They are initially constructed in a module’s interface
and then passed into the various other parts of the module. These tables are then added to
and passed into additional non-terminals based on the scoping rules of the variables in
SPEC.

a. Visible Types.

The visible types table is constructed initially from the module types table. In
the module’s interface, all types corresponding to the module’s name are extracted from
the module types table and placed in the visible types table. This table is then passed into
all the other non-terminals in the program, as dictated by the scope rules. The visible
types table is not added to by concept names since these names are already in the table.
Any other types that are declared (in variable names) are added to the table. This table is
used to build any table requiring a type. The value of this type could be localized or the

actual name as discussed above.

b. Visible Names.
The visible names table is initially formed in the interface section of a
module. Currently, it is primarily used in the name declaration routines to determine if a

name is already declared. It will also be used extensively in the type checking routines to

56

obtain the cross reference value of a symbol when that symbol is used. As done in the
visible types table, it is passed to all non-terminals as dictated by the scoping rules of

SPEC.

B. MAJOR ATTRIBUTES.

1. Error Reporting.

Errors are reported in SPEC in one of two ways. If the error can be identified by
the attribute grammar equations, a call to the C language function "error_message” is
made. This function returns a string in the correct format for an error message and
contains the appropriate information. If the error cannot be identified by the attribute
grammar equations, but can be identified by a "C" routine, that C language routine may

call the error_message function directly.

a. verror_message.

The verror_message function is the actual C language function corresponding
to a call to "error_message" in the attribute grammar equations. It is contained in the
mylib.c file and detailed in Appendix B. All of the codes for error messages are a
constant integer value and are detailed in the file myconst.m4 and mylib.c. Each error
has a unique code. Each code has a predetermined number of arguments that it requires
to properly report the error. When the error in "invoked", all of these arguments must be

passed to the verror_message function in the correct order.

b. Declaration Errors.
Declaration errors are determined by two different C language functions--

"vcheck_simple_decl” and "vcheck_complex_decl". The first of these routines,

57

check_simple_decl, is used to check all declarations that do not have a signature of
arguments associated with them. The second routine, check_complex_decl, is used for
declarations that have a signature. Each of these functions returns a null string if the
declaration is not previously defined or an error message otherwise. All of the
declaration errors are placed in an attribute named "d_error_s". Prior to adding the
current declaration to the respective table, this attribute is checked and if it is NULL, the

attribute is added.

¢. Error Concatenation.
All errors are passed up the semantic tree in an attribute named error_msgs_s.
Each non-terminal in the tree has this attribute associated with it. At each level, the
attributes are concatenated with the lower levels and any errors that were discovered in

that level and passed up to the higher levels.

2. Building the Symbol Table.

As mentioned above, the symbol table actually consists of five structures, each
structure having a unique purpose. It was determined that the four secondary tables
(textual names, parameters, results and classes) could be built independent of the primary
table (stbl) since these tables depend only on the cross reference value which can be
determined immediately.

The primary table (stbl) is built in two layers, due to the declaration precedences
of SPEC. These precedences require that module names be globally visible and unique,
and messages and concepts be unique within their module. Therefore, the first layer of

the symbol table building process collects all the module names and passes them up to

58

e ——

the root non-terminal (in the "ip_mxref” attribute). These names are then passed back
down the semantic tree (as the ip_mcmxref attribute) and all the message and concept
names are collected in accordance with the scope rules of SPEC. In this way,
redeclarations are reported in a logical, semantically correct order. For example, if a
message or concept name redefines a module name, an error is reported when the attempt
is made to define the concept or message name. After this primary table is built, it is

passed down into all non-terminals and used to construct the visible names table in the

interface section of each module.
The other four parts of the symbol table are built in one layer. This layer collects
all the values and their appropriate range and passes the results up so that they can then

be passed back down and used by all the non-terminals.

3. Extended Types.

Due to the need tc store result types in a result type table, it was necessary to
develop a slightly modified type called extended type. If a type is immediately
determinable, such as a literal or type name, the range of the visible_types table for the
actual type name is placed in the "xten_type" attribute. If the type of the construct is not
immediately determinable, the actual text of the construct is placed in the attribute. In
this way, a C language function, resolve_type, can take this value and resolve the type of

the construct or symbol when needed.

C. NAME ANALYSIS.
Name analysis is the first of three aspects in the type checking process. During name

analysis, tables are built reflecting all the names used in the SPEC code. If an invalid

59

—

declaration is attempted or an invalid type used, an error is reported. The tables built
during name analysis are used during the second aspect (type consistency checking) to

determine if any errors occur.

1. Checking if an identical declaration exists.

There are two routines used to check if a declaration exists prior to declaring a
name--check_complex_decl and check_simple_decl. Each of these routines takes a
signature and analyzes all other symbols in the current scope to see if that name has been
previously declared. If it has, they will report an error, otherwise, they return a NULL
string.

2. Making a new declaration.

To make a declaration, three macros were defined in the "mymac.m4" file. Only
one of these macros need be used. Each of them checks a string type attribute (always
named d_error_s) and if that attribute is NULL, makes the declaration. If the attribute is
not NULL, meaning that the declaration would be a "redeclaration”, the declaration is not

made.

3. Reporting an error.

An error is reported at the declaration point as detailed in section 1 above. In
each non-terminal .tructure that declares a new name, the attribute "d_error_s" is
concatenated with all other error messages from the children non-terminals and the result
is passed up the semantic tree. In this way, the errors encountered are placed in the

correct position within the list of error messages.

D. IDENTIFYING ERRORS TO THE USER.

The third and final aspect of type checking reports any errors that occured to the user.
Currently all errors are identified by SPEC source line numbers. If no syntax errors
occur, these error messages are output to the standard output at the end of program
executon. Currently, the SPEC grammar does not have syntactic error productions

added in, although they have been developed for previous versions of the grammar.

61

V. EXTENSIONS.

A. TYPE CONSISTENCY ANALYSIS.
Type Consistency analysis is the second aspect of the type checking process.
Although the C language routines were coded and syntactically debugged, the required

attributes have not been implemented into the Kodiyak source code.

1. Seeking the Correct Symbol Table Entry.

The process of finding the correct symbol table entry is similar to that of checking
to see if a declaration has been made, except for the fact that actual arguments instead of
formal arguments are included in the "source” name. To obtain the correct symbol table
entry, a call is made to the C language routine "seek_symbol". This routine will search
the current environment (visible_names), and the global environment (stbl) to determine
if the name exists. If more than one possible interpretation of the name exists, the
function will return the appropriate error message, listing all possible interpretations. If a
unique candidate exists for the signature, the string representation of the cross reference
value of the symbol is returned. Conversely, if no symbol could be found that matches
the signature passed to seek_symbol, the string representation of the integer value "0"
will be retumed. If desired, this routine could be easily modified to allow an error

message to be returned if no symbol exists.

62

2. Obtaining a Symbol Table entry’s type.

If a symbol has been found that matches the actual name of the symbol, another
"C" language routine, "resolve_type" is called to obtain the result type of the symbol.
Using the information provided in the "stbl_results" table, this routine recursively
analyzes the symbol’s value until a valid type name is obtained. The recursive analysis is
required to resolve this table’s transitive dependency on other messages or concepts as
discussed in Chapter 3. When this transitive dependency is resolved, the type name’s
translation in the "visible_types" table is returned to the Kodiyak attribute. This attribute
is then passed up the semantic tree and used at "parent levels" to determine if an

operation is valid.

3. Determining if an Operator is defined.

During tue name analysis, an entry was made in the symbol table for each
operator overloading. Since SPEC is entirely defined in terms of the standard type
library, by processing the standard type library together with the SPEC code to be type
checked, all possible operator meanings are placed in the symbol table. To determine if
an operator use is valid, simply take the operator’s textual representation, append the
appropriate arguments (determined by its use) to it and use the routine "seek_symbol".
This routine will then return the cross reference of the message that overloaded that

operator. Then the result type may be obtained as discussed in section 2 above.

4. Reporting Errors.
The reporting of type checking errors is very similar to the reporting of

declaration errors with one small exception. Since "seek_symbol" always returns a string

——

value, the attribute in which this value is stored must be checked to see if the attribute
contains an error message or the string representation of an integer (greater than 0). If

the attribute contains an error message, that error message is then concatenated with the

error messages generated by the children non-terminals and the result passed up the
semantic tree. Otherwise, only the error messages generated by the children are

concatenated and passed up the tree.

B. SPECIAL SPEC LANGUAGE ISSUES.

Some of the more complex SPEC issues such as inheritance, instance declarations
and importation/exportation were addressed and accounted for in the design, but not
implemented. The proposed methods for implementing these features, based on the

design is discussed below.

1. Inheritance & Instance Declarations.

Inheritance and instantiation present unique challenges to the generation of a type
checker using an attribute grammar tool. One of the most significant problems arises
because of the possible transitivity of either of these structures. For example, 2 module
may inherit a module which inherits another module, which inherits another module, etc.
This requires that the module which is the "lowest common denominator” be expanded
first, then the next, etc.

Additionally, the way that inheritance is defined in SPEC poses other problems.
Specifically, if a module inherits another module which contains a message with the
same signature as the current module, the two messages are combined according to

predetermined rules [Ref. 20] to form the expanded, resultant module.

a. Preprocessor Usage.

To address these unique problems, this thesis proposes the use of a
preprocessor. This preprocessor would take the SPEC source code, expand it as
necessary and present its output to the type checker. The type checker would then
operate upon this intermediate source code and produce its error messages. If the
"inheritance / instantiation tool" recognized any errors such as a circular inheritance, it

would report these errors to the user and terminate.

b. Error Reporting Drawback.

The preprocessor would present to the type checker a modified version of the
source code with no inheritance or instantiation (and probably write its output to a file).
This however, presents a problem. Since the type checker reports error messages based
on a source code line number, any errors identified would be associated with a line

number relating to the "expanded” source, not the original SPEC scurce code.

c. Potential Advantages.

This methodology may have its advantages, however. If the process of
inheritance introduces a structure that has semantic errors in it, the error could be looked
up in the output of the inheritance tool and traced back to its originator. Also, with the
advent of sophisticated text processing tools for the SPEC language, it may be possible to
edit the "true source” code in one window while viewing the error in another window.
Another implicit benefit may be that software developers could use the inheritance tool
independently to examine the expanded specification to determine if they have "hidden"

or "renamed” everything as appropriate.

65

2. Importation & Exportation.

One of the final issues addressed in the design was importation and exportation.
Although they are two different constructs in SPEC, they are uniquely related--a concept
may not be imported unless it is exported by the module in which it is defined.
Additionally, importation and exportation do not present any of the problems posed by
inheritance. They are not transitive and if a concept is already defined with an identical
signature, the new concept cannot be imported and an error should be reported.

The way in which the design was built presents a simple solution to
importation/exportation. Initially, a new structure (Iclzd_exportables) must be built.
This structure should be a localized map with a domain of strings and a range which is a
map. This domain string would contain the name of the module as in all localized maps.
The map which makes up the range should be a map from string to integer. It would
contain as a domain the name of the concept, and as a range an integer value (0 or 1)
representing the boolean value true or false. The range would be true if the concept is
exported, false otherwise.

The second part of the solution is when an importation is requested by a module,
this new table (Iclzd_exportables) is checked immediately. If the module does not export
the desired concept, an error should be reported. Conversely, if the desired concept is
exported, the "visible_names" table would be augmented with the signature and cross-
reference information of the concept(s). This augmentation process would require a C
language function which processes the domain of the "stbl" structure for the specified

module and name and then returns a string consisting of all the new patterns (signature

and cross reference information) which are to be added. This routine would have to be
passed the "stbl_classes” structure so that it could verify that the symbols that it returns

are indeed concepts and not messages.

C. IMPROVED ERROR REPORTING.

The type checker currently reports declaration errors in a way that is easy to
understand, but sometimes difficult to find the conflicting declaration. In order to
provide better feedback to the user, additional tables could be added to the symbol table
to promulgate information that would assist in error reporting. For example, a table with
a domain containing the cross reference value and a range containing the line number
where that symbol was declared would enable error reporting to report the location of a
conflicting declaration.

Another error reporting difficulty is that some of the SPEC constructs have WHERE
clauses that require dynamic (run-time) evaluation. Although it is not feasible to
automatically check these clauses, it is recommended that a warning message or pragma
be output listing the where clause’s contents so that the user could examine this to ensure

the validity of the specification.

D. SUBTYPES.

Subtypes in SPEC are defined as concepts and have a WHERE clause associating the
concept name and another defined type. They present a slight problem because, like
inheritance or instantiation, a subtype may be transitively dependent on another subtype.

The solution to this problem involves using two C language routines, one for declaring a

67

- e

subtype and one for analyzing it. The first routine, "declare_subtype" would take the
subtype name and the type which it is a descendant of and place it in a table. The second

routine, "is_subtype" would then take a type name and recursively analyze this table,

retuming a boolean value representing the validity of the subtype. This routine
"is_subtype" could then be used in some of the existing C language routines such as

"type_equivalent” to assist in the determination of type conflicts.

E. VARIABLE ARGUMENT OR PARAMETER LISTS.

The implementation of variable argument or parameter lists (list preceded by a ’'$’) is
an interesting proposition. Since there are many diffent ways in which these lists may be
firted together, a recursive analysis is required. Currently, variable argument lists have
been acknowledged, but the required recurs.. . -nalysis has not been implemented. This
analysis should take place in the routines that check a declaration and seek a cross

reference.

68

VI. CONCLUSIONS.

A. INTEGRATION INTO A PROGRAMMING ENVIRONMENT.

To truly provide the SPEC user with an effective software development tool, the type
checker must be integrated into a programming environment. In addition to a type
checker, this environment should contain at least a syntax directed editor, pretty printer,
test case generator and eventually a translator that will translate a significant part of the
specification into a compilable target language.

In the short term, the type checker, syntax checker, inheritance preprocessor and
pretty printer should be able to work together in a way that makes the actual separation of
these tools transparent to the user. This could be accomplished efficiently by writing a
unix command script that begins a tool execution when the previously running tool (if
any) completes. In this script, the syntax checker, inheritance preprocessor and type
checker should be called in sequence to provide the user with syntactic and semantic
information concerning their program. Additionally, at least two options should be
provided with this script. One option would allow the user to retain a copy of the file
containing the specification after it has been expanded by the inheritance preprocessor
and the other would run the pretty printer on the code if it is semantically and

syntactically correct.

69

B. EVALUATION OF THE TYPE CHECKER.
Although the type checker is not as yet a usable tool, its feasibility has been

researched and a solid groundwork has been laid for the rest of the implementation.

1. Kodiyak Deficiencies.

While researching this thesis, many deficiencies and "bugs" were found in
Kodiyak. The primary deficiency was the lack of any types other than integer and string.
The implementation of the type checker was forced to use many identical data structures
for similar purposes that should have been one structure. Specifically, the symbol table
required by the SPEC language necessitates the use of a tuple in the range. Since there is
no tuple type in Kodiyak, four maps were used to contain the information.

The inability in Kodiyak to declare a global variable also presented a problem.
Ideally, since the symbol table is not modified once it is built, it would be convenient
(and conserve memory space) if this table could be placed in a variable or data structure
that could be referenced from every production. In this way, fewer attributes would have
to be passed down the semantic tree and the number of attribute equations would be
decreased.

The lack of documentation in the Kodiyak C library is a substantial drawback.
Since Kodiyak is entirely implemented in terms of other tools, the handling of strings and
integers is defined in the C language and utilized by the Kodiyak processor as function or
procedure calls. To effectively extend Kodiyak so that it could meet the requirements
dictated by SPEC, many long hours of deciphering the source code and experimenting

was required.

70

The lack of any predefined Kodiyak functions to output the contents of an entire
map is a handicap. During the incremental implementation of the various maps thai
make up the symbol table, it was necessary to output the information they contained to
verify the functioning of the attributes. Unfortunately, the only way to accomplish this
task was to select each individual map entry and display it. After a short while, this
became very tedious and so routines were built and debugged that dump one dimensional
maps.

2. Kodiyak Benefits.

Probably the most beneficial feature of Kodiyak is its ability to preprocess M4
files prior to conducting the Kodiyak scan. When the preprocessor is extensively used
and considered throughout the implementation, the source code size can be shrunk
dramatically, making both the programmer’s and reader’s job easier. Additionally, the
M4 macros defined by Robert Herndon proved to be invaluable.

Another positive feature of Kodiyak is the way it integrates the functioning of
Lex, Yacc and the C Compiler to produce an executable product. Since all of these tools
are reasonably well understood, many of Kodiyak’s functions can be analyzed from
another perspective, providing an alternative approach to debugging.

Kodiyak’s C language interfacing ability, although difficult to decipher initially,
proved to be a benefit in the long run. It provided a way to "work around” the

deficiencies and implement the type checker in an efficient, sensible manner.

71

C. FUTURE WORK.

1. Extensions of the current implementation.

The type checker is feasible and worthwhile to complete. The extensions still
required are implementable by two students, working independently and present no
significant problems. One student should focus effort on the preprocessor and another on
implementing type consistency checking, importation and integrating a current version of
the error productions into the type checker.

Since the design and implementation or this thesis, the meaning of a signature has
been ext=nded to include the formal parameters of modules, concepts and messages. To
implement this feature, the type checker’s implementation of a "pattern" must be
extended to include formal parameters by adding in a new delimiter and the additional
irformation. All of the C language routines which check declarations and look up names

must also be extended accordingly.

2. Incremental Type Checking.

One significant project that should be addressed in the future is the incremental
type checking of the SPEC grammar within a syntax directed editor. This would then
allow any errors to be identified concurrently with the writing of the specification,
permitting better time utilization. Additionally, the benefit for individuals learning the
SPEC language would be significant since as syntax or semantic errors were made, the
reason and cause would be displayed immediately. A syntax directed editor for SPEC

currently exists [Ref. 21]).

D. GUIDELINES FOR EXTENDING KODIYAK.

The Kodiyak language is very simple to extend when the interactions between the C
library and the actual Kodiyak tool are understood. These interactions are manifested .by
calls to functions in the C library whicii are built through strings in the actual Kodiyak
AG code. For example, a Kodiyak language map reference translates into a call to one of
six map lookup functions, depending on the domain and range of the map. Some

guidelines for using the C language escape feature of Kodiyak are:

e Whenever a string is used directly from the Kodiyak program, the string should
be immediately "flattened” to the temporary work area (by means of a call to
xtstrflatten) and then IMMEDIATELY copied to a work area belonging to your
routines. Leaving a string in the Kodiyak temporary work area can be fatal since
Kodiya': overwrites that work area frequently.

e Always build in extensive error checking in your routines to avoid errors such as
array overflow. "Silent" errors in your routines may cause other, reportable
errors within Kodiyak which may confuse the situation.

e Syntacticallv debug your routines independently from Kodiyak (as best as
possible) to avoid unnecessary (and frustrating) delays. The Kodiyak
compilation process is not fast by any means--especially the C compilation
phase.

¢ The Kodiyak program prepends a "w" to the name of a routine beginning with a
"%" (e.g. a procedure) and a "v" to the name of any function hefore calling that
function in C.

APPENDIX A - SPEC GRAMMAR.

This Appendix contains the version of the SPEC grammar used to implement the type
checker. This version does not contain any of the syntactic error productions which have
been developed or any attribute definitions. It is primarily provided as a quick reference
for the grammar of the SPEC language and for contrast with the type checkers attribute
grammar code which is contained in Appendix B.

! version stamp $Header: spec.k,v 1.10 89/02/11 20:11:31 berzins Locked $

! Kopas Version -- Updated to version 1.11 of grammar 20 April 89.

! In the grammar, comments go from a ™!"™ to the end of the line.

! Termiral symbols are entirely upper case or enclosed in single quotes (’).

! Nenterminal symbols are entirely lower case.

! Lexical character classes start with a captial letter and are enclosed in ({}.

! In a regular expression, x+ means one or more Xx’s.
! In a regular expression, X* means zero or more x’s.
! In a regular expression, [xyz] means x or y or z.
! In a regular expression, [“xyz] means any character except x or y or z.
! In a regular expression, [a-z]) means any character between a and z.
In a reguliar expression, . means any character except newline.

definitions of lexical classes

tdefire Digit :[0-9]

$define Int :{Digit i+

tcefire Letzer :[a-zA-2]

$defire Alphra :({Letter} ! {Digit}i™_ ™)
tdefine Blank ;0 \t\nl

tdefine Quote 0 [™)

$cefirne Backsliash AN

$define Char :{{""\\] | {Backslash}{Quote} | {Backslash}{Backslash})
defiritions of wnite space and comments

! definitions of

:{Blank}+

R AN 0

compound symbols and keywords

74

NE AR

NLT R 4

a7 im>"

NLE Mag="

NGE (P~>="
EQV M=

NEQV HabE L A
RANGE e
APPEND Hal R
MOD :{Backslash} |MOD
EXP :'tt!
BIND HaE S
ARRCW HiaE D Sl

IF :IF

THEN :THEN
ELSE tELSE

IN :IN

U H¢)
ALl :ALL

SOME :SOME
NUMBER :NUMBER
SUM :SUM
PRODUCT :PRODUCT
SET :SET
MAXIMUM tMAXIMUM
MINIMUM :MINIMUM
UNION tUNION
INTERSECTION :INTERSECTION
SUCH :SUCH{Blank}*THAT
ELSE_IF tELSE{Blank}*IF
AS :AS

CHOOSE :CHOOSE
CONCEPT :CONCEPT
CEFINITION :DEFINITION
DELAY :DELAY
jo3e] DO

ENC :END
EXTEPTION :EXCEPTION
EXPORT :EXPCRT

FI :FI
FOREACE :FOREACH
FROM :FROM
FUNCTICN tFUNCTION
GENERATE :GENERATE
HIDE tHIDE
IMPORT : IMPORT
INHERIT :INHERIT
INITIALLY :INITIALLY
INSTANCE :INSTANCE
INVARIANT :INVARIANT
MACHINE tMACHINE
MESSAGE :MESSAGE
MCozL :MODEL
oc :0D
OF :OF
OPERATOR :OPERATOR

75

OTHERWISE
PERIOD
RENAME
REPLY

SEND

STATE
TEMPORAL
TIME

TO
TRANSACTION
TRANSITION
TYPE

VALUE
VIRTUAL
WHEN

WHERE

INTEGER_LITERAL
REAL_LITERAL
CHAR_LITERAL
STRING_LITERAL

NAME

! operator precedences
! §left means 2+3+4 is

$left
tleft
Sleft
$lefr
$left
Slefc
$lefr
flefr
tieft
%nonassoc
sleft
$lefc
flef:
$lefer
tleft
$left
fleft

%

tattribute declarations

L]

(2+3) +4.

r .
L]

r
v .

SUCH;
IFF;
IMPLIES;
OR;

ANC;
NOT;

rer, >,

IN, RANGE:
U, APPEND;

’ ’ ’ ,
+, -

’/I:
UMINUS;
EXP;
Isl’
STAR;

"y
’

.

! productions of the grammar

start

IF, DO, EXCEPTION,
COMMA;

‘=', LE

2]

:OTHERWISE
:PERIOD
:RENAME
:REPLY
:SEND
:STATE

: TEMPORAL
:TIME

:TO
:TRANSACTION
sTRANSITION
:TYPE
:VALUE
:VIRTUAL
tWHEN
:WHERE

:{Int}
:{Int}™."{Int)

:{Quote} {Char}*{Quote}

:{letter}{Alphal~

NAME, SEMI;

E, NE, NLT, NGT, NLE, 7%, EQV, NEQV;

PLUS, MINUS;

MUL,

'('l

76

DIV,

e

MOD;

'.’, DOT, WHERE;

spec
: spec medule
{1
!
{0}
. ! A producticn with nothing after the "|"™ means the empty string
! is a legal replacement for the left hand side.
module
. : function
{ }
| machine
{)
| type
{1}
| definition
{}
| instance ! of a generic module
{1}
function
: optionally virtual FUNCTION interface messages concepts END
i)
! Virtual modules are for inheritance only, never used directly.
machine

: optionally virtual MACHINE interface state messages transactions temporals
concepts ENC

type
: optionally_virtual TYPE interface model messages transactions temporals

v

concepts

NITION interface concepts END

instance

: INSTANCE forrmal_rame ‘=’ actual name END

b
INSTANCE foreach actual name END

1

Fer making instances or partial instartiations of generic modules.
! The foreach clause allows defining sets of instances.
interface

crmal rame inherits imports export

. €
[

.

This part describes the static aspects of a module’s interface.
The dy..amic aspects of the interface are described in the messages.
A rcoile 1s generic (ff it nas parameters.

77

inherits

hide

renames

imperts

export

messages

.

! The parameters can be constrained by a WHERE clause.

! A module can inherit the behavior of other modules.

! A module can import concepts from other modules.

! A module can export concepts for use by other modules.

inherits INHERIT actual_name hide renames

i}

! Ancestors are generalizations or simplified views of a module.
! A module inherits all of the behavior of its ancestors.

! Riding a message or concept means it will ...t be inherited.

! Inherited components can be renamed to avoid naming conflicts.

HIDE name_list
{1

! Useful for providing limited views of an actor.
! Different user classes may see different views of a system.
! Messages and concepts can be hidden.

renames RENAME NAME AS NAME
{1}

! Renaming is useful for preventing name conflicts when inheriting
from multiple sources, and for adapting modules for new uses.

! The parameters, model anc state components, messages, exceptions,
! and concepts cf an actcr can be renamed.

imports IMPORT name_list FROM actual_name

EXPORT name_list

messages message
)

78

message

response

response_cases

~

response_body

choose

reply

sencs

send

transiticn

MESSAGE formal_message operator response

{

r

{

}

esponse_body
}

tesponse_cases

{

}

WHEN expression_list response_body response_cases

!

{

}

OTHERWISE response_body

{

choose reply sends transition

{

CHOCSE '’ (' field list restriction *)’

{

REPLY actual_message where

GENERATE actual message where
[

!

™

‘

}

}

}

ptiora._ foreach SEND ac

3

RANSITION exgressicn_

3

I
b

ot

79

1

used in generators

ual_message TO actual_name where

for describing state changes

formal message
: opticnal_exception optional_ formal _name formal_ arguments

{0}

actual _message
i optional_exception optional_ actual_name formal_ arguments

{}

.

where
: WHERE expression_list
(1}

| tprec SEMI ! must have a lower
precedence than WHERE
{1
optionally virtual
: VIRTUAL
{1}
{
{}
optional_exception
: EXCEPTION
{}
i $prec SEMI

cperator
OPERATOR operator_list

optiona. foreach
: foreach

foreach
: FOREACH ' (' field_list restriction ’)’
{}
;
! foreach is used to describe a set of messages or instances
ccncepts
concepts concept
L
!
o
H
concept

CONCEPT forral_name ':' type spec where

80

“~

mode]

.~

state !

invariant !

initially !

~

transactions

transaction

~

action_list

~e

actiorn

! constants

{1}

CONCEPT formal_name formal_arguments where VALUE formal arguments
! functions, defined with preconditions and postconditions

£}

t data types have conceptual models for values
MODEL formal_arguments invariant

{1}

machines have conceptual models for states
STATE formal arguments invariant initially

{}

invariants are true for all states or instances
INVARIANT expression_list
{}

initial conditions are true only at the beginning
INITIALLY expression_list

[

L

transactions transaction

)

TRANSACTION fcrma. _name ’=’ action_list where
i}

! Transactions are atomic,.
The where clause can specify timing constraints.

actior list ’;’ action fprec SEMI ! sequence
¢}
acticn
i)
action action Sprec STAR ! unordered set of actions
{1}
IF alternatives FI ! choice
i}
DO alternatives OD ! repeated choice
{1}
actual_name ! a normal message or subtransaction
{
EXCEPTICON actual_name ! an exception message
(]
81

where

lternatives
: alternatives OR guard action_list
i)
i guard action_list

{}

~

guard
: WHEN expression ARROW
{1}
{
{}
temporals
: temporals temporal
{}
|
{1
temporal

: TEMPORAL NAME where response
{}

! Temporal events are trigged at absolute times,
! in terms of the local clock of the actor.

! The "where™ describes the triggering conditions
in terms of TIME, PERIOD, and DELAY.

optional_formal name
: formal _name

~

formal_name

formal_parameters ! parameter values are determined at specification time
: i’ field list '}’ where

i}

~

formai_arguments ! arguments are evaluated at run-time
: '’ field_ list ')’

{}

field 1i

s
9
»
"t

: field list ’,’ field

{1
| field
{}

~

field
: name_list '
{)
| '$’ NAME ':
{}
b

{1

~

type_spec
: actual name
{1}

[

{1

name list

:! type_spec

' type_spec

: name_list NAME

{}
{ NAME
£

~

optional_actual_name
! actual. nane

actual_name

: NAME actual parameters

actual_parameters !
- ? ;7

actua._argumerts

i arg_liist '}

s

arguments are evaluated at

s ' arg_list 'y

(.

precedence than ' ('
[

83

! name of a data type

parameler va.ues are determined at specification time

fprec SEMI | must have

run~time

Sprec SEMI ! must have

¢ lcwer

arg_list
¢ arg_list ',’ arg Sprec COMMA

| arg

~e

arg
: expression
i}
| pair
{1}

.

expression_list
: expression_list ’,’ expression Sprec COMMA
{1
| expression Aprec COMMA
{1

~

expression
: quantifier ' !’ field list restriction BIND expression ')’
{1}
| actual_name actual_arguments
()
| actual name ’'@' actual name actual_arguments

{1}

| NOT expression Yprec NOT
i)

| expressicn AND expression $prec AND
{0}

| expression OR expression $prec OR
(G

| expression IMPLIES expression Sprec IMPLIES
{1}
expression IFF expression ¥prec IFF
(I

| expression '<’ expression tprec LE
{1}

+ expression ’'>’ expression $prec LE
(.
expression ‘=’ expression $prec LE
i}

! expression LE expression tprec LE
{1
expression GE expression §rrec LE
{1}

, expression NE e: *r .on $prec LE
{1}

| expression NLT expression Aprec LE
{)

| expression NGT expression $prec LE
i)
expression NLE expression §prec LE
{1
expressicr NGE expressicr Sprec LE
0}
expression EQV expression Sprec LE
t}

84

—I I .

expression NEQV expressiorn

{1
* ’
[
expression
{}
expression
{}
expression
{1}
expression
{1}
expression
{1}
expression
{}
expressicn
{}
expression
£}
expression
[

~' expression

~! expression
-’ expression
'+’ expression
'/’ expression
MOD expression
EXP expression

U expression

APPEND expression

IN expression

‘' expression

[N}

'S’ expression

! $x represents a collection of items rather than just one

! sl = (x,
tsl o= [x,
}
expression
! x in {a
tfa .. bl

e
.. b; if
|4

$s2) means si
$s2] means sl

RANGE

x in

'L NAME

expression

'{’ expression '}

IF expressicn THEN expression middle_cases ELSE expression FI

P

The cuirrent local time, used in temporal events

3
I
1)
I

Tre time between successive events of this type

actual name

xgressior
£ {a

s

union({x}, s2)

$prec LE
Sprec UMINUS
Aprec PLUS
sprec MINUS
Sprec MUL
Sprec DIV
Sprec MOD
Sprec EXP
Sprec U
Sprec APPEND
fprec IN

fprec STAR

*x is the value of x in the previous state

Yprec DOT

append ({x], s2)

$prec RANGE

.. b} 1iff a <= x <= b
is sorted in increasing order

’

expression with units of measurement

NANOSEC MICROSEC MILLISEC SECONDS

$prec DOT

$prec DOT

ime between the triggering event and the response

! literal with explicit type

Ar urdefined value to be specified later

Ar. undefined and illegal value

middie_cases

quantifier

restriction

midd.e_cases ELSE_IF expression THEN expression

PRODUCT

SET
{1
MAXIMUM
{0}
MINIMUM
¢}
UNION
11

INTERSECTION

r o

i)

SUCE exgressicn

-
I
INTEGER_IITERAL
{0

REAL LITERAL
[
CHAR LITERAL
}

STRING_LITERAL

o

NAME

expressicns ']’

expressions '}

i/ expressions ‘;’ expressicn ’}’

pair .ist ']’
o)
‘it opair '

re.aticr .ltera.s are sets cf

86

1

! enumeration type literal
! sequence literal
! set literal
map literail
! tuple literal

«

one_cf litera.

expressions

pair_list

operatcr_list

-~

operator_symbcl

expression_list
{3}

pair_list ’,’ pair
{1

NAME pair

{}

pair

()

NAME BIND expression
{1}

operator_list operator_symbol
{1}

operator_symbol

{ }

NO

QO — o~
m m)

e

P e P e P e
[[A]
. T e o] e o)

Fd
[A]
fry

87

i EQV

+ v - ~ e}
e e e a va = E—@—D —

NEQV

o]
z
(3
P e L = I -~ _—~ o - —
<

88

APPENDIX B - CODE.

This Appendix contains all of the code which was written or modified to implement
the type checker. There are eight actual files contained in this Appendix. Each file has a

unique purpose and the specifics of their use is detailed in the first file--makefile.

1. MAKEFILE.

spec: macros.m4 my.ibcat.c spec.mé
/n/suns2/usr/suns2/merge/BIN/kscript ~DAGLEXDEBUG -DAGYACCDEBUG \
-t ’‘%p 5000° -t “%a 5000’ -t ’#&o 5000’ -t ’8%e 5000’ -s -x -z -k -e\
-g -v -d /n/suns2/usr/suns2/merge/BIN \
-DUSERLIB=\"/n/suns2/usr/suns2/merge/kopas/thesis_imp/mylibcat.c\" spec.m4

macros.mé: lib/head.m4 ilib/attrib psg.mi myconst.m4 mymac.md lib/tail.m§
cat lib/head.md lib/attrib_psg.m4 myconst.md mymac.mé4 lib/tail.m4 >macros.mé
chmod +r macros.m§

mylibcat.c: sn/ssuns2/usr/suns2/merge/BIN/locallib.c mylib.c
car /n/surs2/usr/suns2/merge/BIN/locallib.c mylib.c > mylibcat.c
chmod +r mylibcat.c

output: mylib.c lik/aitirib psg.m4 myconst.m4 mymac.m§ spec.md
print my.ib.c myconst.mé mymac.mé spec.md
cat lib/attrib_psg.m4 >! attrib psg.md
print attrib_psg.mé
rm attrib_psg.mé

2. ATTRIB_PSG.M4.

/‘
I Macros for passing stuff around.
*/
define(passup 1, '$8' .82 5 = $1.82_s)
define (passup_2, passup_ 1{Sl, $2);
passup_1(Si, $3))
define(passup_3, passup_1($i, $2);
passup_1(S81, 53);
pass.o_l1(S1, $4))
defire({passup_4, passup_1(S1, $2);

passup_11(Sl, §2);
passup_l{S$l, $4);
passup_ (51, $%)

89

define (passup_5,

define (passup_§,

define (passup_7,

define (passup_8,

define(passdn_1,

define(passdn_2,

define(passdn_3,

define(passdr_4,

define (passdn_5,

define{passdn_6,

define (passdn? 1,

passup_l(Sl,
passup_1(S1,
passup_1(S1,
passup_l(S1I,

passup_1(s1,
passup_1($1,
passup_1($1,
passup_1($1,
passup_1(s1,

passup_1(S1,
passup_l1(S1,
passup_1(s1,
passup_1(S1,
passup_1($1,
passup_1(s1,

passup_1(S1,
passup_1(s1,
passup_1(51,
passup_l($1,
passup_1($1,
passup_:(Sl,
passup_1(s1,

passdn_1($1,

passdn_1(S$1,
passdn_1(s1,

passdn_1(Si,
passdn_1(S$1,
passdn_1(S1,

passdn_1(51,
passdn_1(S$1,
passdn_1(S1,
passdn_1(s1,

passdn_1($1,
passdn_1(s1,
passdn_l (81,
passdn_1(51,
passdn_l(s1,

$3);
$4);
$5);
$6))

$3);
$4);
$5):
$6);
$7))

$3):
$4);
$5);
$6);
s

$8))

$3):
$4);
$5):
$6):
$7);
SR);
$9))

$3))

$3);
$4))

$3);
$4);
$5))

$3);
$4);
$5);
$6))

$3);
$4);
$5);
$6);
$7))

$1.83_§ =

passup_l(81, $2);

passup_1(s$1, $2):

passup_1(S$1, $2);

passup_1($1, $2);

passdn_1(S1, $2):

passdn_1(81, $2):

passdn_1(51, $2);

passdn_1(S1, $2);

passdn_1(s1, $2);

'$8° .83 i;

$2.83_1 = '$s8'.83 1)

$1.52_i = '$8’.$2 i)

90

define (passdn2 2,
passdn2_1(S1,

passdn2_1
$2,

define(passdr2_3,
passdr2_1(S5:,
passdnd_1(S51,

passdn2_ 1
s2,
$2.

define (passdn2_4, passdr2 1
passdn2_1($1, §2,
passdn2_1($1, s2,
passdn2_1(sl, S2,

define (passdn2_5,
passdn2_1(S$1,
passdn2_1(S$1,
passdn2_1($1,
passdn2_1(S$1,

passdn2_1
$2,
$2,
$2,
$2,

define (passdn2_6, passdn2 1
passdn2_1(S1, s2,
passdn2_1(s1, $2,
passdn2_1($1, $2,
passdn2_1(s., $2,
passdn2_1(sl, s2,

define(passdn3_1,
§2.56 %

$3.54 i

$1.84_3
'S5 .54
'$S7 .54

define(passdni_2, passdn3_1
passdn3_1(S1, $2,

(si, s2,

$4))

(si,
$4);
$5))

$2,

(s1,
$4);
$5);
$6))

$2,

(s1, s2,
S$4);
$5);
$6);
$7))
(s1, s2,
$4):
$5);
$6);
$7):
$8))

Yy
iz
1)

$2,
$3))

(sZ,
$3,

.54_

$3);

$3);

$3):

$3):

$3);

i;

s$3,

$4);

define{passdni 3, passdn3_1(SZ, $2, $3, $4);
passdn3_1(s$1, $2, $3, $35);:
passcdrn:_1(S1, $2, $3, s6))
define(passdnl3 4, passdn3_1(Si, S$2, $3, $4);
passdn3_1($:, $2, $3, $5):
passdn3_1(S$l, $2, $3, 5€);
passdnd _1(S1, $2, $3, sT))
def;ne(passd:E_S, passdrn3 _1(si, $2, $3, $4);
passan2_1{S5., $2, $3, $%);
passar 1(sl, $2, $3, s6);
passdn3_1(S1, $2, $3, $7);
passcani_1(SL, $2, $3, s$8))
define(passdn4 I, passdn2_1($1, $2, $5):
passdn2_1(83, $4, $5))
define(passdré 2, passdnd_1($l, $2, $3, $4, $5);
passdaré_1(S1, $2, $3, 54, $6))
define(passdni I, passdn3_1($1, $2, $3, $6);
passan2_1(54, $S, S§¢€)

Passovr is Usec fcr passing aitr

iputes from one non-terminal to another,
The order is (fror,tc,atsribute,...)

L 4
v/
def:nelgasscur

IN)
wn
tar

-

91

acefine (passovr_2,

define(passov:_3,

passovr_1(S$1, s2, $3
passovr_1($1,5%2,54))

passovr_i($1, s2, $3

passovr_1($1, $2, $4);
passovr_1($1, $2, $5))

define (passovr_4,

passovr_1($1, $2, $3

passovr_1(51, $2, 54);
passovr_1($1, $2, $5);
passovr_1($1, $2, $6))

define{passovr 5,

passovr_1($1, $2, $3

passovr_1{$1, $2, $4);
passovr_1($1, $2, $5);
passovr_1($1, 82, $6);
passovr_1($1, $2, $7))

define (passovr 6,

passovr_1($1, $2, <3

passovr_1($1, $2, $4);
passovr_1{$1l, $2, $5);
passovr_1($1, $2, $6);
passovr_1(8$1, $2, $7):
passovr_1($1, $2, $8))

/*

* Pass informaticn about in pre-order.

* Parent is first argument, then children left to right.
nd _s to attribute

* Attribute comes last.
* names as appropriate.
*/

define{passicQ_1,

define(passiol_l,

'$57 .52

define(passio2_1,
$2.53_1

'$57.83_

define(passic3_1,
$2.%4 1
$3.54 3

'$$7 .54

define (passio0_2,

passioC_

define (passio0_3,

passio0_
passioC_

define (passio0_4,

passiol_
passiol_
passiol

Macro appends _i a

'$57.81 s = '$5’.§

$1.52_1 = ‘$§’.52_

s = $1.52_s)

$1.83_1 = '$$§’.83_
= $..83_s;
s = $2.53_s)

$1.%4_1 = '$§5'.54_
= 31.84_s;
= $2.%4_s;
s = $3.%4_s)

passio0_1(81);
1(s2))

passio0_1($1);
1(s2);
1(s3))

passiol_1(s1);
1(82);
1(s83);
1(54))

)

)i

)

);

1_1)

i:

3

<7

i;

92

define (passiol_é, passioC_1(s1);
passio0_1(s2):;
passiol_1(53);
passiocl_1($4);
passiol_1($5);
passio0_1($6}))

define (passiol 2, passiol_1(s1, $2):
passiol_1($1, $3))

define (passiol_3, passiol 1(S1, $2);
passiol _1($1, $3):
passiol _1(s$1l, $4))

define (passicl_4, passiol 1($1, $2);
passiol 1($1, $3);
passiol_1($1, $4);
passiol_1($1, $5))

define (passiol_5, pass o1 1($1, $2);
passiol 1(s$1, 353);
passiol_1($1, $4):
passiol_1($1, $5);
passiol 1(sl, $6))

define(passio2_2, passio2_1(sl, $2, $3);
passio2 1($1l, $2, $4))

define (passioc2_3, passio2_1($1, s2, $3);
passio2 1(si, $2, $4);
passic2 1(51, $2, $5))

define (passio2_4, passio2_11(81, $2, $3):
passic2_1(si, $2, $4);
passiod_1(81, $2, $5);
passio2_1($1, $2, $6))

define(passio2_5, passio2_1(sl, $2, $3):
passic2 1(S1, $2, $4);
passic2_1($i, $2, $5);
passic2_1(S81, $2, s$€);
passio2 1(S1, $2, $7))

define(passic3_2, passio3 _1(Sl, s$2, $3, $4);
passio3_1(S1, $2, $3, $5))

define (passio3_3, passio3_1(S1, $2, $3, $4);
passio3_1(S$i, $2, $3, §5);
passio3_1($i1, $2, $3, s6))

defineipassicl 4, passic3_1(S81, $2, §3, S4);
pastio3_1(SI1, Sz, S$3, $5);
passiold_1(81, $2, $3, $6);
passic3_1(S8., $z, $3, s7))

define(passio3_5, passic3_1($1, $2, $3, $4):
passio3_1(S$1, $2, $3, $3);
passio3_1(s1, $2, $3, $6);
passie3_1(81, $2, $3, §7);
passio3_1(S$1, $2, $3, $8))

/* pass up strings, concatenated together */
define (catstrup2 1, *$$7 .83 s = $1.83_s * $2.83_s)
define (catstrup3d_1, '$87.84 s = $1.54_s ~ $2.84_s ~ $3.84_s)

/* pass up maps, concatenated together */
define (catmapup2_1, '$$’ .83 s = $1.83_s +| $2.53_s)
define (catmapup3_1, '$$7 .84 s = $1.84_ s +| $2.54_s +| $3.%4_s)
define (passovr2x_1, passovr_1($1,%2,%4);
passovr_1($1,$3,5%4))
define (passovr3x_1, passovr2x_1($1,52,$3,85);
passovr_1($1,54,5%3))
define(passovréx_1, passovr2x_1($1,52,83,56);
passovrlx_1($1,54,85,56))
define (passovr2x_2, passovr_2($1,$2,84,85);
passovr_2(51,$3,%4,589%))
define (passovr3x_2, passovr3x_1($1, $2, $3, %4, $5):
passovr3x_1(s1, $2, $3, $4, $6))
define (passovrdx_2, passovrdx_1($1l, $2, $3, $4, $5, $6);
passovrdx_1($1, $2, $3, $4, $5, $T))

/'

* weave -- a partial version of passio.

v weave assumes the first nonterminal generates the attribute.
* and all non-terminals listed use the product of the previcu
b ronterminal, but the attribute is not returned to the parern:
* nonterminal after it's use by the last nonterminal.

*/

define(weave3_ 1, passovr($1,52,%4);
passovr{$2,53,54))

define(weave4_ 1, weave3_1(Sl, $2, $3, $3);
passovr($3, $4, $5))

define(weave3 2, weave3_1($1, $2, $3, $4);
weave3_1($1, $2, $3, $5))

define (weave4 2, weaved 1($1, $2, $3, $4, 85);
weave4_1(S1, $2, $3, $4, 56))

define(passio4_ 1, $1.85 1 = '8$5'.85 i;
$2.55_i = $1.85 s;
$3.85 i = £2.$5 s;
$4.85_ i = $3.85_s;
$5’ .55 s = $4.55_s)
define(passio4 2, passioé_l(Si, $2, 353, S4, $5);
passio4_1(sl, $2, 53, $4, S$6))

94

define(passicS_ 1, $1.86_1i = '$8’'.56_i;
$2.56 1 = $1.56_s;
$3.86_1 = $2.%6_s;
$4.86_1 = $3.56_s;
$5.56_1 = $4.56_s;

'$$7.56_5 = $5.56_s)
define(passio5_2, passioS5_1($1, $2, $3, $4, $5, $6);
passioS_1($1, $2, $3, $4, $&, sN))
define (passiof_1, $1.87_i = *$$'.87_i;
$2.87 1 = $1.57_s;
$3.87 i = $2.57_s;
$4.87_1i = $3.87_s;
$5.57 1 = $4.87_s;
$6.87_1i = $5.87_s;
*$$7.87_s = $6.87_s)
define(passio6_2, passio6_l($1, $2, $3, $4, $5, $6, $7);
passiob_1($1, $2, $3, s4, $5, S6, $8))

3. MYMAC.M4.

/* Macros used for making declarations shorter.
>/

define(IP_STBL_INFO, ip_stbl class_s : int->iny;
ip_stbi_names_s : int->string;
ip_stb._params_s int->string;
ip_stbl_result_s int->string;
ip_stbl _class_i int->int;
ip_stbl names_i : int->string;
1p_stbl params_i : irt->string;
ip_stbi_result_i : int->string)

define(STBL_INFC, stbl i : string->string->string;
stbi _class_i : int->in%t;
stb. _names_i : inti->string;
stb. params_{ : 1ini->siring;
stbl result_i : int->string)

defi~e(VISIBILITY_ TBLS, visible types_i : string->string;
visib.e_types_s : string->string;
visipble rames I : string->string:
visible_names_s : string->string)

define(IP MCMXREF TBLS, ip_mcmxref s : string->string;
ip_memxref I i stiring->string)

/'
* Macro’s used for various tasks including defining names, etc.
”

-

* mk_simpie & mk_complex are very much alike. mk_complex has arguments ($5)

* thougn.

>/

95

define(mk_simple dec._io, $1_s = ($2 == NULL_STRING)
N -> (S1_1i ($3) == NULL_STRING)
-> {(S3 [XREF_DELIMITER, 1i2s(s4)l)} +1 Sl i
‘40 (83 (XREF_DELIMITER, i2s($4),
PATTERN_DELIMITER, $1_i ($3)})) +1 $. i
‘47 sl 1)

define (mk_simple_decl, $5 = ($2 == NULL_STRING)

-> ($1 ($3) == NULL_STRING)
=> {($3 : [XREF_DELIMITER, 12s($4)])} +!| $1
‘#’{($3 : [XREF_DELIMITER, 1i2s($4),
PATTERN_DELIMITER, $1 ($3)]))} +| sl
‘¢ s1)

define (mk_comp.ex_decl, $1_s = ($2 == NULL_STRING)

-> ($1_4i ($3) == NULL_STRING)
-> { (53 [$5, XREF_DELIMITER, 12s(S$4)])} +! $1 i
‘#/((83 : ($1_i ($3), PATTERN_DELIMITER, S5,
XREF_DELIMITER, 12s($4)])} +| $1 i
‘#0031 1)
define{acs _e.em, $4 = S$1 +: ((S2 $3)3%)

* Macrc’s used for passing around the symbcl table informaticn.
is the stuff tha:t never changes, e.g. is not modified during progress
* cf type checking a mndule.
* Syrmpo.: Table Information
stpl

* Th:is
Consists cf

stz _names
stbl result
stbl class
stbl params

»
(VLY - S VI N I

/* symbec. table building macrcs */

defire(stbl bulldl, passiocl_4(ip_stb. class,ip_stbl names,ip stb. params,
ip_stbl_result))

passio. 4 (S1,ip stbl class,ip_sib._names,ip_stbl_pararms,
ip_stbl_result))

passio2 4($1,52,ip_stk. class,ip stbl names,

def.ne(stpb. buildl,

define(stp. builde,

define(stbl buiidl,
define(stbl buildd4,
define(stp._builds,

define(stkl buildse,

ip_stbl_params, ip_stbl_resuit))
passiol_4($1,$2,83,ip_stbl_class,ip_stbl_names,

ip_stbl_params, ip_stbl_resuilt))
passio4_2($1,82,53,%4,1ip_stbl class,ip_stbl_names);
passiod_2($1,$2,$3,54,ip_stbl_params, ip_stbl result})
passio5_2($1,$2,%$3,54,85,ip_stbl_class,ip_stbl_names);
passio5_2($1,$2,%3,54,55,ip_stbl_params, ip_stbl_result))
passic6_21($1,$2,53,$4,$5,$6.4p_stbl class,ip_stbl_names);
passio6_2($1,$2,53,54,95,$6,ip_stbi_params, ip_stbl result))

define(passdn_stbil, passdn_S($1, stbl, stkl result, stbl ciass, stb._names,

stbl params))

define(passdr_stbl2, passdn2_5($1, $2, stbi, stbl_result, stb. class, stbl_names,
stbl_params))

define(passdr_stbl3, passdr3_5(S$1, $2, $3, stbl, stbl_result, stbl class,

stbl names,stb. params))

qef:.ne(passan_s'n.4, passdnd _5($i, $§2, $3, stbl, stbl result, s-bl class,
- stbl _names,stbl_params);
passdr_5(54, stbl, stbl_result, stbl class,
stbl names,stbl params))
def:n.ipassar_siplS, passdn3_5($l, $2, $3, stbl, stbl_result, stbl_class,
stbl names, stbl _params);
passdn2_51($4, $5, stbl, stbl_result, stbl_class,
stbl_names, stbl_params}))
define(passdr_stbl€, passdn3_5($l, $2, $3, stbl, stbl_result, stbl class,
stbl names,stbl params);
passdn3_5($4, $5, $6, stbl, stbl_result, stbl_class,
stbl names, stbl_params))

4. MYCONST.M4.

/* Symbolic Constants used in Program -- Are always capitalized. */
define (NULL STRING, ‘'‘""')

define (UNDEFINED_TYPE, ‘"Type Name Undefined.™’)

define (SPEC_LIBRARY MODULE_type, ‘"type™’)

define (3LOBAL _TYPE NAMES, ‘"#globalé™’)

define (CURRENT MCDULE_TAG, ‘'"#current_moduled®’)

define (FALSE, C)

define (FUNCTION CLASS, 1)

define (MACHINE CTLASS, 2)

defire(TYPE CLASS, 3)

def.ne (DEFINITION CLASS, 4)

define (INSTANCF CLASS, 5)

define (MESSAGE TLASS, €)

define (CONCEPT _CLASSI, 7

define (CONCERPT CLASSZ, 8)

define (VARIABLE CTLAS3, 9)

def:ne (TRANSAZTION CLAss, 110)

define (TEMPORAL CLASS, 11}

def:re (PATTERN_DELIMITER, ‘'"»"/

define (XREF CE_L MITER, °
Qefine(ELEM ZZlIM
def:ine (RET_SYMBOL, ‘"+n7)

def.ne (AZTURL DELIM, '‘"; %)

def.ne(PAIF ZI_IM AR

97

S. HEAL .Md4.

diverc (-1)
/I
A]
* Copyright 198€, Robert Herndon
(C) 1986, Robert Hernden
Modified by Robert Kopas 1989.
Purpose - To allow Consistency and implement macros needed
for the type checker.

*» % * % =

6. TAIL.MA4.

/'

* Many of m4’s keywords are commonly used words. Remove

* all buil.in macro names tc suppress any unexpected side-effects.

v/
undefine(*#')
undefine{‘changequote’)
undefine(‘define’)
undefine (‘divnum’)
undefine('dnl’)
undefine (‘dumpdef’)
undefine(‘errprint’)
undefine (‘eval’)
undefine(‘ifdef’)
undefine(‘ifelse’)
undefine(‘include’)
undefire(‘incr’)
undefine (‘index’) .
undefine(‘len’)
undefine (‘maketemp’}
undefine(‘sirciude’)
undefine(‘substr’)
undefine(‘syscmd’)
undefine(‘translit”’)
undefire({‘undivert’)
divert (0)
undefine(‘divers’)
undefine(‘undefine’)

7. MYLIB.C.

/* Symbolic Constant Declarations -- It is extremely important that
these concur with those defined in mymac.md
*
/
tdefine MYCHARLENMAX 10000
tdefine MAX_XREF_NUM_LEN 20

#define PATTERN DELIMITER rer

#define XREF DELIMITER r-r

#define ELEM DELIMITER i .
#define END_ELEMENT (s) (*s == ELEM_DELIMITER)

#tdefine END_ACTUALS(s) (*s == '\0")

#define END FORMALS (s) (*s == XREF_DELI“ITER)

#define ENL PATTERN(s) (*s == TATTERN_DELIMITER)

98

#define UNDEFINED_ TYPE "Type Name Undefined."”
#define CURRENT MODULE _TAG ‘"#current module#”
tdefine MESSAGE CLASS 6
/* errcrs -- those that are enumerated in mymac.m§ must concur with these
alsc.
- */
tdefine NAME_REDEFINED 1
tdefine CNAME REDEFINED 2
t#define UNDECLARED TYPE 3
- d#define NONSPECIFIC_REFERENCE 4
/t
* Warning Messages
*/
tdefine UNRESOLVED TYPE LD
int last_xref = 0;
/'

* v_get new_xref has an argument named unused just to

* satisfy Kodiyak syntaciic requirements.

* Everytime the routine is callied, it wilil obtain a new, unigue xref.
*/

int vge: new_xref(unused)
char *unused;

char mychars'MYC
int mycharlen =

wxrefs_dump (xreftostrmap)
xobject xreftecstrmap;
{

int cur_index;

xstring lockup_elem;

v vy PR = s s e = 1 - PR 3 {

for (cur_index = 1; cur_index <= last_xref; cur_index++) {
lockup _eler = ximapslkup(xreftostrmap, cur_index);

printf(™\t%d : ",cur_index);
woutput (lookup_eler);
prirncf(™\n");
ffiush(stdout);

wxrefi dump (xreftointmap)
xobject xrefroi -map;

{

int cur . - ,

int leckd i

for (cur_inde- ; cur_index <= last_xref; cur_index++) {
100 ip_ele~ ximapilkup(xreftointmap, cur_index);
prir:fe™\t%d : %3\n", cur_index, lookup_elem);
fflosn(stocuty;

wsmapi_dump(maprame)
xobject mapname;
{
struct xmflatten f;
xobject p;
int defval;
int defined;
int range_val;

if (!XHEAP (mapname) && !XPAIR(mapname))} {
xerr ("smapi dump -- Non Map Argument \n", 0, 0, 0);
}
defined = XFALSE:;
defval = 0;
xminit (&f, mapname):
for (p = xmnext (&f); p.op _type:; p = xmnext{(&f)) {
if (!XPAIR(p))
xerr ("smapi_dump -- Corrupt map. \n",0,0,0);
if (p.op_typel0].op_type) |
range_val = *(p.op_typel(l].ip_type):
printf({"\t $s -> td\n", xtscrflatten{p.op_type(0]),range_val);:
fflush (stdout);
}
else if (!defined) {
defval = *(p.op _typeil].ip_type);
defined = XTRUE;
}
} /* end for loop */
printf ("\t DEFAULT =-> $d\n", defval):;
fflush(stdout);

wsmaps_dump (mapname)
xobject mapname;
{
struct xmflatten f;
xobject p;
xobject defval;
int defined;
xheap range_val;

if (!XHEAP (mapname) && !XPAIR(mapname)) |
xerr ("smapi_ dump -- Non Map Argument \n", C, 0, 0);
}
defined = XFALSE;
defval.op_type = (xheap) 0;
xminit (&f, mapname);
for (p = xmnext(&éf); p.op_type:; p = xmnext (&f)) {
if (!XPAIR(p))
xerr ("smaps_dump -- Corrupt map. \n",C,0,0);
if (p op_typel(0].op_type) {
range_val = p.op typel[l].op_type;
printf(”"\t &s -> ", xtstrflatten(p.op_type(ll));
xheapprint (stdout, range_val):;
printf("\n");
fflush (stdeout):
)
eise {f ('defired) |

100

)
prin
xhea
prin
fflu

*/

defval = p.op_type'l];
defined XTRUE;
}
/* end for loop */
€ ("\LDEFAULT -> ")
pprint (stdout, defval);
tE(*"\n");
sh (stdout);

address.

char *d_addr, *s_addr;

int

{

char *verror_message(err_rum,

ma

int

for

if

}

ret

x_len;

char_ent = C;

(; ({*s_addr != PATTERN_DELIMITER)
; s_addr++, d_addr++, max_len--,

*d_addr *s_addr;
(max_lern > C) {
*d_addr '\O’;
return (char_cnt +

1)

/t

urn (max_len);

line_nc,

int err_num;
int line_ro;

{

xobject xa,

swi

xb, xc, xd;

tch (err_nurm) {
case NAME REDEFINED:
return vims ("*** ERRQOR **»

include

int copy_pattern (d_addr, s_addr, max_len)

&& (>

\Q"

xa, xb,

Line %4

(by iter %s)\n",

line_no, xa,
break;
case CNAME REDEF

return vimt

NED:
ERROR ***

*®
(by
line_no,

INED
(mrxr

xa,
break;

case UNDECLARED_TYPE:
recurn vfmt ("*** ERRQR **+

line no, xa);

break;

case NONSPECIFIC_REFERENCE:
returrn vimz ("*** ERROR **w

case UNRESOLVEC TYPE:
returrn vimz ("** WARNING
break;

aefa.lv:

LA]

xb) ;

Line &d

item %s)\n",
xb,

Xc)

Line &d

Line &d

Line &d

101

Xc,

copy_pattern -- designed to copy a specific pattern to a destination
It returns the length of the pattern copied or 0.
if the pattern is a null string (or equivalent), a ‘\0’

is copied.

s_addr != ‘\0’) && (max_len > 0))

char_cnt++)

*/

xd)

Name Already Defined -- §s

: Name Already Defined -- %s(%s)

: Type Name Undeclared -- $s\n",

Do you mean &s\n”, line no, xa):;

Unresolved type used\n", line_ro);

F.....l.-...lll.llIIIlllIlII-IIIIlIIII---IIIIII-I-----Af

break;
}

return "";

#define more_sig_patterns(s) (*s != ’\0")
#define next_pattern(s) for (;*s != '\0’;) \
if (*s++ == PATTERN_DELIMITER) \
break
tdefine next_element (s) for (;((*s != *\0’) && (*s != XREF_DELIMITER));) \
if (*xs++ == ELEM DELIMITER) \
break

int num_copied = 0;
#define cp2mychars(s) if ((num_copied = copy_pattern(&émychars{mycharlen],\
s, MYCHARLENMAX - mycharlen))) \
mycharlen = mycharlen + num_copied; \
else \

xerr ("MYCHARLENMAX exceeded -- increase

MYCHARLENMAX. ", \
0,0,0)

/'
* Name declaration routines.
* These routines check for the existence of a signature.
If the signature exists, they return an error message stating that
* the signature cannot be redefined. Otherwise they return "7
*/

xstring vcheck_simple_decl (name_map, name, line_no, xref2Zname_map)
xobject name_map, name;
int line_no;
xobject xref2name_map;
{
char xref number {MAX XREF NUM _LEN];
char *patterns;
char *tmp_args;

patterns = xtstrflatten (xsmapslkup(name_map, name)]);
while more_sig patterns(patterns) {
if (*patterns == XREF DELIMITER) { /* empty pattern -- no args */
for (tmp_args = patterns; *tmp_args++ != XREF_DELIMITER;)

’

if (copy_pattern(xref_number, tmp_args, MAX_XREF _NUM_LEN})
return (xstring) verror_ message (NAME_REDEFINED, line_nc, name, ximapslkupl
xref2name_map, atol(xref_number))):;

else

xerr ("Exceeded MAX_XREF_NUM_LEN -- Increase value...%,0,0,0);
}
else
next _pattern(patterns);
1
return {(xstring) ™";

102

xstring vcheck complex_decl (name_map, name, f_args, line_no, xref2name_map)
xopject name_map, name, f_args;
int line_no;
xobject xreflname_map:
{
char *patterns;
char *new_sig;
char xref number [MAX_XREF_NUM LEN];
char *tmp_name, *tmp_args;
int retval;

mycharlen = 0;
new_sig = mychars;
cp2mychars (xtstrflatten(f_args));
patterns = xtstrflatten(xsmapslkup({name_map, name});
while more_sig_patterns (patterns) ({
if (match_f fp (new_sig, patterns)) ({
for (tmp_args = patterns; *tmp_args++ != XREF_DELIMITER;)
’
if (copy pattern(xref number, tmp_args, MAX_XREF_NUM LEN)) {
tmp_rame = smychars{mycharlen];
cp2mychars{xtstrflatten(name));
/* remove xref value and delimiter from args. */
for (tmp_args = new_sig; ({(*tmp_args != XREF_DELIMITER) &&
{(*tmp_args != ’\0’)) ;)
tmp_args++;
*ump_args = ‘\C';
return (xstring) verrcr_message (CNAME REDEFINED, line_no, name, new_sig,
ximapsikup (xrefZ2name_map, atoi(xref number))):

else
xerr ("Exceeded MAX_XREF _NUM_LEN -- Increase valuve...",C,0,0);
}
else {
nex:t_pattern{patterns);
)
} /* end while */

return (xstring) H

/* type egua. Is sirict eguality. No allowances are made (or should be)

for subtypes cr eguivaliences. */
int type_equal (argl, argl)
char *arg., *arg2;
{

/* position both args at beginning of type. */

while (Targl«++ != ':')

;
while (*arg2++ '= ':’')

’

for (; ™argl == ®arg2; argl++, argl-+)
if ((rargl == ELEM DELIMITER) || (*argl == XREF_DELIMITER))
recurn{ly);
/¥ an exception cerditicn. */
if ((*argl == ’\C’) && (*arg2 == XREF_DELIMITER})
return{l);
rezurn{l);

103

o ———

int match_f fp {(temp new, temp_old)
char *temp_new, *temp_old;

{
while ((*temp new != '\0’) && (*temp_old != XREF_DELIMITER)) {

if (type_equal(temp_new, temp_cld)) {
1f (l*temp _new == '$’) && (*temp_old == '$’)) {
next_element (temp_new);
next_element (temp_old);
}
else if (*temp_new == ’'$’} {
/* a recursive analysis must be done here. */

return (0); /*for now */

}

else if (*temp_old == ‘$') {
/* another recursive analysis */
return (0); /*for now */

}

else
next_element (temp_new);
next_element (temp_old);

}

}

/* the following two cases are for 0 arguments. */
else if (*temp new == 'S") {
next_element (temp_new);
}
else if (*temp old == ’$") {
next_element (temp_old):
else
returni{0);
} /* end while */
if ({(*temp_new == ‘\0") && (*temp_old == XREF_DELIMITER))

/* both at end of formals */
return(l):
recurn(C);

/* routines used in resolving types and references. */
char *myalloc (req_size)
int req_size;
{
char *p;
if ((p = (char *) alloc (reg_size)) == NULL)
xerr {("No more Dynamic Storage Available”, 0,0,0);
returnip)

char *save_string (s)
char *s;

104

char *gp;

p = myalloc(strlen(s) + 1l};
strcpy(p, s):
return (p):

char *loose_string(s)
char *s;
{

free(s);

return (NULL) ;

/* at -- locate a character in a string */
char *at (s, seek_char)
char *s;
char seek_char;
{

for (;*s !'= "\0’; s++)

if (*s == seek_char)
return(s);
return (NULL);

/* substr -- return a substring of the original string */
char *subsir (start_pos, last_pes)
char *start_pos, *last_pos;
{
char *ret_string;
char *tmp_ptr;

if (start_pos == NULL)
return (NULL);
else if (last_pos == NULL)
return (save_string({start_pos));
else ¢
ret_string = myalloc(last_pcs - start_pos + 2):
for (tmp_ptr = ret_string; start_pos <= lasi_pos ; last_pos++, tmp _ptr++)
*tmp ptr = *start_pos;

char *element_ substr(s)
char *s;
{

char *last_elem;
if ((iast_eler = at{s, ELEM DELIMITER)) != NULL)

return{substr(s, --last_elem)};
rezurn(substr(s, last_elem));

105

char *get_arg_type (actuals, cur_arg)
char *actuals;
int cur_arg;
{ —
int tmp;
for (tmp = 1:; ((tmp != cur_arg) && 'FND_ACTUALS(actuals)): tmp++)
next_element (actuals);
if END_ACTUALS (actuals)
return{NULL; ;
return (element_ substr(actuals)):

int is_pair(s)
char *s;
{
for {; !END_FORMALS(s) && !END_ACTUALS(s) && !END_ELEMENT(S) ; s++)
if ((*s == '3') && (*(s + 1) == ':'))
return {(1);
return(0);

int names_match (elementl, element2)
char *elementl, *element2;
{
for (; *elementl == *element2 ;)
1f (*elementl == ':’)
return{l);
return{0);

int mystrcmp (argl, arg?l)
char *argl, *arg2;
{
for (; ((*argl == *arg2) |! (END_FORMALS(argl) && END_ACTUALS(arg2®
if (END_FORMALS (argl))
return{i):
return(0);

int pullout xref (str)

char *str;

{
char *start_pos, *end_pos;
char tmp_char:
int retval:

start_pos = at(str, XREF_DF IMITER);
end_pos = at(str, PATTERN_DELIMITER);
tmp _char = *end_pos;

*end_pos = ‘\C’;

retval = vs2i(start_pos);

*end_pos = tmp_char;

return(retval);

106

int type_match (formal, actual)
char *formal, *actual;
{
for (; *formal++ != ’:’ ;)
H /*move past name */
if (mystrcmp(formal, actuai))
return(l);
else if (mystrcmp{formal, UNDEFINED_TYPE) ||
mystrcmp (actual, UNDEFINED_TYPE)})
return(l);
rezurn(l);

/l
function match_fa :
-- checks if formals match actuals.
-- returns: true or false.
*/
int match_fa (formals, actuals)
char *formals, *actuals;
{
while (!END_FORMALS {fcrmals) && !END_ACTUALS (actuals)) {
if (*fcrmals == ’'§’)
if (is_pair(actuals))
if (names_match(formals, actuals)) {
nex:_element (formals);
nex: element (actuals);
} -
else
next_element (formals);
else if (type match (formals, actuals))
next_element{actuals);

nexi_element (formals);

if (is_pair{actuals)) { /* name must bind */
if (inames_match(formals, actuals)
return(0);
else { /* advance actuals past bind */
for (; *actuals++ '= ':' ;)
;
actuals++;
}
b /* end if is_pair */
if (types_match(formals, actuals)) {
next_element (formais);
nexi_element (actuals);
}
e.se
return(C);

107

}
if (END_FORMALS (fcrmals) &é END_ACTUALS (actuals))

return(l);
return (C);

int Analyze_patterns(pattern_string, actual_args)
char *pattern_string;
char *actual_args;
{
char *tmp_ptr, *cur_pattern;

if ((cur_pattern = pattern_string) == NULL)
return(QJ);
while (more_sig patterns(cur_pattern}) {
if (match_fa (cur_pattern, actual_args))
return (pullout_xref(cur_pattern));
else
next_pattern(cur_pattern);
}

return(0);

xstring vseek_symbol (name, actual_args, visible names, stbl, stbl classes,
stbl_names, line_num)
xobject name, actual_args;
xobject visible_names;
xobject stbl, stbl classes, stbl names;
int line_num;
{ -
xstring patterns;
int xref_valiue, cur_arg, tmp_xref val;
char *arg_type name;
char *flat_patterns, *flat_actuals;
char *other_overloadings = NULL;

patterns = xsmapslkup(name, visible names);

flat_actuals = save_string(xtstrflatten({actual_args)):

xref vaiue = Analyze_patterns(flat_patterns, flat_actuals):;
cur_arg = 1;

/* search all other modules for overloadings */

while ((arg_type_name = get_arg type(flat_actuals, cur_arg)) != NULL) {
if (strcmp{arg_type name, xtstrflatten(xsmapslkup(visible names,
CURRENT_MODULE_TAG)))) {

/* not current module */
patterns = xsmapslkup{xsmapxlkup(stbl, arg_type_name), name);
flat_patterns = loose_string(flat_patterns);
flat_patterns = save_string(xtstrflatten(patterns));
tmp_xref_val = Analyze_patterns(flat _patterns, flat_actuals);
if {(ximapilkup(stbl_classes, tmp_xref val) == MESSAGE_CLASS) {
if (xref_value && tmp_xref_val) {
/* multiple overloadings */
if (other_overloadings == NULL)
other_overloadings = vfmt ("%s or %s",
ximapsikup(stb._names, xref_va.ue),

108

ximapslkup(stbl_names, tmp_xref_val) };
else
other_overloadings = vimt ("%s, &s",
ximapslkup(stbl_names, tmp_xref val), other_overlcadings):
}
else if (!xref_value)
xref_value = tmp_xref_ val;

}
cur_arg++;
} /* end of while loop */

if (other_overloadings == NULL)
return vils(xref value};
return verror_message (NONSPECIFIC_REFERENCE, line_num, other_overloadings);

8. SPEC.M4.

! versior stamp $Header: spec.k,v 1.10 89/02/11 20:11:31 berzins Locked §
! Kopas- Revised Grammar iaw v 1.11 05 April 89
! Kopas- Completed Declarations 20 April 89

! In the grammar, comments go from a "!™ to the end of the line.
! Terminal symbols are entirely upper case or enclosed in single quotes (’).
! Nonterminal symbols are entirely lower case.
! Lexical character classes start with a captial letter and are enclosed in {ij.
! In a regular expression, X+ means one or more x’s.
! In a regular expression, x* means zero or more x's.
' In a regular expression, {xyz] means X Or y or z.
! In a regular expression, ["xyz] means any character except x or y or z.
n a regular expression, [a-z] means any character between a and z.
a regu.ar expression, . means any character except newline.

Fi b4

el

'm§ inclusion flles: mymac.m4
inciude (macros.mé)

! definitions of lexical classes

sdefine Cigit :[0-9)

tdefine Int :{Digit}+

$def:ine Letter :la-zA-2)

Sdefine Alpha :({Letter}i{Digit}|" ")

Sdefine Blank :[\t\n] -

tdefine Quote HI!

Sdefire Backslash :"\\"

Sdefire Char :{[*"\\]] {Backslash){Quote} | {Backs

lash} {Backslash})

:{Blank}+

AP LT

! defiritions c¢f compound symbcls and keywords

! I had to add the foliowing terminal names to get iine numbers...

LBRACK
DOTMARK

SLASH
STARMARK
MINUSMARK
PLUSMARK
EQUALS

T

LT
QUESTION_MARK

'end of my additions

AND

OR

NOT
IMPLIES
IFF

LE
GE
NE
NLT
NGT
NLE
NGE
EQV
NEQV

RANGE
APPEND

EXP

BIND
ARROAN

-
pe

THEN
ELSE

SOME
NUMBER
suM
PRODUCT
SET
MAXIMUM
MINIMUM
UNION
INTERSECTION
SUCH

LSE_IF

AS

CHOOSE
CONCEPT
DEFINITICN

i
VA
sman
sn
LY

C

:{Backslash} IMOD

iMwan

sn_yn

tIF
:THEN
tELSE
:IN

tALL

:SOME

:NUMBER

:SUM

:PRODUCT

tSET

tMAXIMUM
tMINIMUM

:UNION

: INTERSECTION
tSUCH{Blank}*THAT
tELSE(Blank}*IF

:AS

:CHOOSE
:CONCEPT
:DEFINITION

110

DELAY

Lo

END
EXCEPTION
EXPORT

FI
FOREACH
FROM
FUNCTION
GENERATE
HIDE
IMPORT
INHERIT
INITIALLY
INSTANCE
INVARIANT
MACHINE
MESSAGE
MCDEL

oD

OF
OPERATCR
OTHERWISE
PERIOD
RENAME
REPLY
SEND
STATE
TEMPORAL
TIME

To
TRANSACTION
TRANSITION
TYPE
VALUE
VIRTCAL
WHEN
WHERE

Slef: r:', IF, DT,
Vlef: ., COMMA;
Sleft SUCH;

Slef: IFF

S.efs IMPLIES:
$.efx CRr;

Sief: ANZ;

Y ef: N2,

t.efl: T, GT, EQUAL
$~onasscc IN, RANGE;
tief: Y, APPEND;
$.ef- FLUSMARY, VIX

EXCEPTION, NAME,

111

:DELAY

:DO

1END
tEXCEPTION
:EXPORT
:FI
:FOREACH
:FROM
:FUNCTION
:GENERATE
sHIDE

: IMPORT

: INHERIT
:INITIALLY
:INSTANCE
:INVARIANT
tMACHINE
:MESSAGE
:MODEL

:0D

:OF
:OPERATOR
:OTHERWISE
:PERIOD
:RENAME
:REPLY
:SEND
:STATE
:TEMPORAL
:TIME

:TO

: TRANSACTION
:TRANSITION
:TYPE
:VALUE
:VIRTUAL
sWHEN
tWHERE

HED S o3
r{Inci™ "iInt)

.HIn mrn

:{Quote}{Char}*{Cuose:

s{iLetter}{A.phai~

SEMI;

EQV, NEQV;

$lef: STARMARK, SLASH, MUL, LIV, MCD;

$left UMINUS:

$lef: EXP;

$lefr *$’, LBRACK, '(’, ’'{', DOTMARK, DCT, WHERE;
Slefe STAR;

111

tattribute declarations
'Terminals First

BIND, ARROW, IF, THEN, ELSE, ALL, SOME, NUMBER, SUM, PRODUCT, SET, MAXIMUM,
MINIMUM, UNION, INTERSECTION, SUCH, ELSE_IF, AS, CHOOSE, CONCEPT, DEFINITION,
DELAY, DO, END, EXCEPTION, EXPORT, FI, FOREACH, FROM, FUNCTION, GENERATE, HIDE,
IMPORT, INHERIT, INITIALLY, INSTANCE, INVARIANT, MACHINE, MESSAGE, MODEL, OD, OF,
OPERATOR, OTHERWISE, PERIOD, RENAME, REPLY, SEND, STATE, TEMPORAL, TIME, 7O,
TRANSACTION, TRANSITION, TYPE, VALUE, VIRTUAL, WHEN, WHERE {

Sline : int;

QUESTION_MARK, LT, GT, EQUALS, PLUSMARK, MINUSMARK, STARMARK, SLASH,
DOTMARK, LBRACK {

$line : int;

text : string;

NOT, ANC, OR, IMPLIES, IFr, LE, GE, NE, NLT, NGT, NLE, NGE, EQV, NEQV,
MCD, EXP, U, APPEND, IN, RANGE {

Stext : siring;

$iine : in%;

INTEGER_LITERAL, REAL LITERAL, CHAR_LITERAL, STRING_LITERAL {
stext : string;
$line : in<;

—

!Now Nonterminals.

spec {
mod_types_s : string->string->string;
global type_s: string->string;
type_table : : string->string->string;

ip mxref s : string->string;

Ip_STBL_INFO:

ip_mcmxref I : string->string;
ip_iclzd_mcmxref s : string->string->string;
STBL_INEC;

112

mod types s : string->string->string;
globa._type_s: siring->string;
type_table i : siring->silring->string;
ip_mxref s : string->string;

ip_mxref i : string->string;

IP_STBL_INFO;

STBL_INFO;

ip_leclzd_memxref s : string->string->string:
ip memxref i : string->string;

error_msgs_s : string;

function |
module name_s : string;
mxref_value_s : int:
mod_types_s : string->string->string;
type_table_i : string->string->string;

ip_mxref s : string->string;
ip_mxref i : string->string;
IP_STBL_INFO;

STBL_INFO;

IP_MCMXREF_TBLS;

error_msgs_s : string;

machine {
module_name_s : string;
mxref_value s : int;
mod_types_s : string->string->stiring;
type_table_i : string->stiring->string;

ip_mxref s : string->string;
ip_mxref i : s

IP_STBL_INFC;

STBL_INFO;

IP_MCMXREF TBLS;

error_msgs_s : string;

type |
module rame_s : siring;
mxref_value_s : int;
mod_types_s : string~>string->string;
global_type s: string->string;
type_table i : string->string->string;

ip_mxref s : string->string;
ip_mxref { : string~>string;
IP_STBL_INFC;

STBL_INFO;

IP_MCMXREF_TBLS;

error_msgs_ s : siring;

113

definition {
module_name_s : s
mxref value_s : in
mod_types_s : stri
type_table_1i : str

->siring->string;
ng->string~>string;

ip_mxref_s : string->string;
ip_mxref i : string->string;
IP_STBL_INFO;

STBL_INFO;

IP_MCMXREF_TBLS;

error _msgs_s : string;

instance {
module_name_s : string;
mxref_value s : int;
type_table_i : string->string~>string;

ip_mxref_ s : string->string;
ip mxref i : string->string;
IP_STBL_INFO;

STBL_INFO;

IP_MCMXREF_TBLS;

error_msgs_s

d_error_s : str

interface {
module_name_s : string;
mxref_value s : int;
type_table_i : string->string~>string;
env_i : int;
VISIBILITY_TBLS;
ip mxref s : string->string;
ip _mxref i : string->string;
IP_STBL_INFO;
STBL_INFC;
error msgs_s : string;
d_error_s : string;

inherits |

error_msgs_s : string;

hide {

error_msgs_s : string;

'

renames ¢

114

imports |

type_table i : string->string->string;

VISIBILITY TBLS;

IP_STBL_INFO;
STBL_INFO;

error_msgs_s : string;

export {

error_msgs_s : string;

messages {
VISIBILITY TBLS;

IP_MCMXREF TBLS;
IP_STBL_INFO;
STBL_INEC;

error msgs_s : string;

message
VISIBILITY TBLS;

STBL_INFC;

error msgs_s : string;

response |
xref value_ I : int;

VISIBILITY TBLS;

IP_STBL INFC;
STBL_INFO;

error_msgs_s : string;

response_cases
xref value i : inz;

VISIBILITY_TBLS;
IP_STBL_INFC;
STBL_INFS;

115

response_body |{
xref value_ i : int;

VISIBILITY_TBLS;

IP_STBL_INFO;
STBL_INFO;

error_msgs_s : string;

choose {
VISIBILITY TBLS;

IP_STBL_INFO;
STBL_INFO;

error msgs_s ! string;

reply |
xref_value_i : int;

VISIBILITY_ TBLS:

IP_STBL_INFO;
STBL_INFOQ;

error_msgs_s : string;

sends {
VISIBILITY TBLS;

IP_STBL_INFC;
STBL_INFO;

error_msgs_s : string;

send {
VISIBILITY TBLS;

IP_STBL_INFO;
STBL_INFO;

error_msgs_s : string;

transition |{
VISIBILITY_ _TBLS;

1P STBL INFC;

116

error_msgs_s : string;

formal message {
xref_value_s : int;
message name_s : string;
message_fargs_s : string;

VISIBILITY_TBLS;
IP_MCMXREF_TBLS;
IP_STBL_INFO;
STBL_INFO;

d_error_s : string;
error_msgs_s : string;

3

actual_message ¢
actual_text_s : string;
VISIBILITY TBLS:

IP_STBL_INFO;
STBL_INFO;

error_msgs_s : string;

where |
VISIBILITY TBLS;

IP_STBL_INFO;
STBL_INFO;

error_msgs_s : string;

optionally virtual {
VISIBILITY TBLS;

IP_STBL_INFO;
STBL_INFO;

error_msqs_s H string;

optiona._excepticr |
VISIBILITY Tsls;

IP_STBL_INFG;

STBL_INFG;

117

error_msgs_s : string;

operator {
xref_value i : int;
message_ fargs i : string;
line_s : int;

VISIBILITY_TBLS;
IP_MCMXREF_TBLS;
IP_STBL_INFO;
STBL_INFO;

error msgs_s : string;

optional_foreach {
VISIBILIi{Y_ TBLS:

IP_STBL_INFO;
STBL_INFO;

error_msgs_s : string;

foreach |{
VISIBILITY_ TBLS;

IP_STBL_INFO;
STBL_INFO;

error_msgs_s : string;

concepts {
module name_ i : string;
local_types_s : string->string;
VISIBILITY TBLS;

IP_MCMXREF_TBLS;
IP_STBL_INFO;
STBL_INFO;

error_msgs_s :!: string;
concept {
local_types_s : string->string;

module_name_i : string;
xref value_s : int;

118

VISIBILITY TBLS;

IP_MCMXREF_TBLS;
IP_STBL_INFOC;
STBL_INFO;
error_msgs_s : string;
d_error_s : string;

}

model {
VISIBILITY TBLS;
IP_STBL_INFO;
STBL_INFO;
error_msgs_s : string;

}

state |

VISIBILITY TBLS:

IP_STBL_INFO;
STBL_INFC;

error msgs_s : string;

invariant !
VISIBILITY TBLS;

IP_STBL_INFO;
STBL_INFO:

errcr _msgs s : string;

initially !
VISIBILITY TBLS;

IP_STBL_INFC;
STBL_INFO;

error_msgs_s : string;

transactions /{
VISIBILITY TBLS;

IP_STBL_INFC;
STBL_INFD;

error _msgs s : string;

119

transaction {
d_error_s : string;

VISIBILITY TBLS:

IP_STBL_INFO;
STBL_INFO;

error _msgs_s : string;

action_list {
VISIBILITY TBLS:;

IP_STBL_INFO;
STBL_INFO;

error_msgs_s : string;

action |{
VISIBILITY_ TBLS:

IP_STBL_INFO;
STBL_INFO;

error_msgs_s : string;

alternatives ¢
VISIBILITY TBLS;

IP_STBL_INFC;
STBL_INEG;

error_msgs_s : string;

IP_STBL_INFO;:
STBL_INFO;

errer_msgs_s : string;

temporals |{
VISIBILITY TBLS:

TP STBL INFO;

120

STBL_INFC;

errcr msgs_s : String;

temporal {
xref value_s : int;
d_error_s : string;

VISIBILITY TBLS;

IP_STBL_INFO;
STBL_INFO;

error_msgs_s : string;

optional formal _name {
name_text_s : siring;
name_params_s : string;
args_1 : string;
env_i : int;
xref value_s : int;
line_s : int;

IP_STBL_INFO;
STBL_INFO;

error msgs_s ! string;

fcrmai_name !
name_text_s: strirg;

name_params_s : string;
env_1 : int;

xref value_s : int;
args_i : string;

line_s : inu;

VISIBILITY_TBLS;

IP_STBL_INFC;
STBL_INFO;

error msgs_s ! siring;
d_errecr_s : sirin

[Ye)
~

fcrmal _parameters
name params s : §

ot
2]
b
o)
\Q

VISIBILITY_TBLS:;

IP_STBL_INFO;
STBL_INFC;

error_msgs_s : string;

formal_arguments {
name_fargs_s : string;
args_text_s : string;

IP_STBL_INFO;
STBL_INFO;

VISIBILITY_TBLS;

error_msgs_s : string;

field list {
fieldpattern_s : string;
text_s : string;

IP_STBL_INFO;
STBL_INFO;

VISIBILITY TBLS;

error_msgs_s : string;

field !
fieldpattern_s : string;
text_s ! string;
xref value_s : int;
d_error_s : string;

IP_STBL_INFC;
STBL_INFO;

VISIBILITY_ TBLS;
error_msgs_s : string;

declname_list {
name_type_text i : string;
name_type_value_ i : string;
fieldpattern_s : string:;
xref value s : int;
text s : string;
d_error_s : string;

IP_STBL_INFO;
STBL_INFG;

VISIBILITY_TBLS;

error_msgs_s : string;

122

type_spec !
type name_text_s : string;
type_name_va.ue_s : string;

- IP_STBL_INFC;
STBL_INFO;

VISIBILITY_ TBLS:

error_msgs_s @ string;
tmp_msg : string;

name_list {
error_msgs_s : string;

}

optional_ actual_name {
full _name_s : string;
actual_params_s : string;
actual _name_text_s : string;
line_s : int;

IP_STBL_INFO;
STBL_INFO;

VISIBILITY_TBLS;

error msgs_s : string;

actua:_nrame {
actual_name_tex:i_s : string;
fuli_name_s : siring;
actual_params_s : string;
lire_s : int;

IP_STBL_INFO;
STBL_INFC;

VISIBILITY TBLS;

error_msgs_s : string;

actual_parameters !
actual _params s : string;

error_msgs_s : string;

123

actual_arguments {
full_args_s : string;

IP_STBL_INFO;
STBL_INFO;

VISIBILITY_ TBLS:

error_msgs_s : string;

value_arguments {
xref value_i : int;

IP_STBL_INFO;
STBL_INFO;

VISIBILITY_TBLS;

error_msgs_s : string;

arg_list {

arglist _text_s : string;

IP_STBL_INFO;
STBL_INFO;

VISIBILITY TBLS:

error_msgs_s : string;

arg |
arg_text_s @ string;

IP_STBL_INFC;
STBL_INFOG;

VISIBILITY_TBLS;

error_msgs_s : string;

expression_list {

xten_type s : string;

IP_STBL_INFO;
STBL_INFO;

VISIBILITY TBLS;

error_msgs_s : string;

124

expression |
ter_type s : string;

IP_STBL_INFO;
STBL_INFC:

VISIBILITY TBLS;

error_msgs_s : string;

middle cases {
IP_STBL_INFO;
STBL_INFO;
VISIBILITY_TBLS;

error_msgs_s : siring;

restriction |{
IP_STBL INFC;
STBL_INFO;
VISIBILITY TBLS;

error_msgs_s : string;

literal ¢
Xler_type_s : siring;

IP_STBL_INFO;

STBL_INFG;
VISIBILITY TBLS:;

errcr_msgs_s @ string;

expressions {
xte~ type_s : string;

IP_STBL_INFO;

STBL_INFG;
VISIBILITY TBLS;

errcr _msgs_ s @ string;

125

pair_list {
xten_type_ s : string;

IP_STBL_INFO;
STBL_INFO;

VISIBILITY_ TBLS:

error_msgs_s : string;

pair {
xten_type_ s : string;
type_s : string;

IP_STBL_INFO;
STBL_INFOQ;

VISIBILITY TBLS;

error_msgs_s : string:

operator_list {
xref_value i : int;
message fargs_: : string;
line_s : int;

STBL_INFC;
IP_MCMXREF TBLS;
d_error_s : string;

error_msgs_s : string;

cperator_symbc. |
operator_texti_s : siring;
line_s : int;

L1
! produciicns of the grammar

stars
spec

Sl.type_table_i = $1.mod_types_s +!

! (GLOBAL_TYPE_NAMES : $i.global_type_s)

$i.ip_stbi_class_i = {(? : int : FALSE));

Si.ip_stb. names_i = {(2? : int : NULL_STRING) };

Sl.ip_stbl params_i = ((? : int : NULL_STRING) };
i NULL_STRING) :;

Sl.ip stc._result i = (2

126

}:

.stbl names_i = S$..lp stbl nares_s;
.stbl_ciass_i = Sl.ip stbl class_s;
i.stbl_params_i = Sl.ip stbl params_s;
.stbl_result_i = Sl.ip stbl result_s;

.ip_mcmxref i = $l.ip mxref_s;
..stbl i = $1.ip lclzd_mcmxref_s;

! test values

Soutput ("TYPES\nl. Global\n");
Ssmaps_dump({Sl.type table i (GLOBAL TYPE_NAMES));
foutput ("2. From module testl\n");
$smaps_dump(Sl.type_table i ("restl™));
Soutput ("3. From module testd\n");
$smaps_dump($i.type_table_i ("test4"));
Soutput ("4. From module test7\n");
Ssmaps_dump(Sl.type table_ i ("test7"));
Soutput ("\n\nMODULE XREF \nModule Testl\n");
Ssmaps_dump($l.stbl i("testl"));

foutput ("Module test4\n");
$smaps_dump(Sl.stbl i("test4")):

fcutput ("Module test7\n");
$smaps_dump($l.stbl_i("test7"));

! dump xref info & error messages.

foutput {("\n\n");

$ouzput ("

Soutput ("-

$output ("

$cutput (Sl.errcr_msgs_s);

foutput ("\n\nCross Reference to Names.\n");

txrefs dump(Sl.stbl _names_i);

%output {("\n\nCrcss Reference to Name Classes.\n"):;
$xrefi dump(Si.stbl class_i);

fcutput ("\n\nCross Reference to Name Parameters.\n");
$xrefs_dump(Sl.stbl params_i};

foutput ("\r\nCross Reference tc Name Results. \n");
$xrefs_durp(Sl.stbl result_i);

spec modu.e
{

catmapupd_L($1,82,mcd_types);
catmapupZ_1(S5.,582,glioba._typ=):

'module names.

passovr_1(Sl, 52, ip mxref);
passup_1(S2, ip_rxref):
!symbcl takble
stb._bulldz(sl,82);

passdr._stbl2(Sl, $2);

. ! pass Qown needel type Trarns.ations.
passcn2_1(51, $Z, type tabie);

passcn2_L(S1, S$Z, ip rarxrefy;

module

catmapup2_l($1l, $2, ip_lclzd mcmxref);

$S.error_msgs_s = [$l.errcr_msgs_s, $2.error_msgs_s]);

$$.mod_types_s = {(? : string : {(? : string : UNDEFINED_ TYPE)})};
$S.global type s = ((? : string : UNDEFINED_TYPE) };

! module names & features.
$S.ip_mxref_s = {(? : string : NU.L_STRING}};

$$.ip_lclzd_mcmxref s = {(? : string : {(? : string : NULL_STRING)})};

'symbol table
stbl build0();

$S.error_msgs_s = "";

~

! A production with nothing after the ™|" means the empty string
! is a legal replacement for the left hand side.

function
{
passup_1($1l, mod_types);
$$.global _type_s = {(? : string : UNDEFINED_TYPE) };

passdn_1(S1, type_table);

!symbol table
passiol_1($1, ip mxref):
stbl buildl(S1);
passdn_stbl1(S1);

passdn_1($1, ip mcmxref);
$$.ip_lclzd mcmxref s = {(Sl.module_name_s : S$Sl.ip mcmxref s)};

passup_1($1l, errcor_msgs);
}
. machine
{
passup_1(51, mod_types);
$S.global_type s = {(? : string : UNDEFINED_TYPE) };
passdn_1(51, type_ table);

!symbol table
passiol_1($81, ip_mxref);
stbl buildl($1);
passdn_stbll(S1);

passdn_1($1, ip mcmxref);
$$.ip_leclzd_mcmxref s = {(Sl.module_name_s : $1.ip mcmxref s} };

passup_1($l, error_msgs);

type

passup_2($., mod_types, global type);
passdn_i(S$., type tabkle);

!symbol table
passiol_1(S1, ip mxref);
stbl buildl($1);
passdn_stbll ($1);

passdn_l1($1, ip mcmxref);
$$.1ip_lclzd memxref s = {($l.module_name_s : $l.ip_mcmxref_s)};

passup_1(S51, error_msgs);
)
| definition
{
passup_1(S1l, mod_types);
$S.global_type s = {(? : string : UNDEFINED_TYPE) };
passdn_l1(S$i, type_table);

!symbol table

passiol 1(Sl, ip mxref);
stbl buildl(sl);
passdn_stbll (§1);

passdn_1($1, ip mcmxref);
$S.ip_lclzd_memxref_ s = {(Sl.module_name_s : Si.ip_mcmxref s)}:

passup_1(S1, error_msgs);
}
| instance ! of a generic module
{
$S.mod_types_s = {(? : string : {(? : string : UNDEFINED TYPE) }) };
$S.global type s = {(? : string : UNDEFINED_TYPE) };
passdn_1(S1, type table);
L

!symbol table
passiol 1 (51, ip mxref);
stbl builcl(sl);
passdr_stpoll(Sl);

passdrn_1(S1, ip mcmxref);
$$.ip_lclzd_memxref_s = {(Sl.module_name_s : $1.ip_mcmxref_s)};:

passup_1(S1, errcr_msgs);

functicn
optionally virtua. FUNZTION interface messages concepts END
q
passup _2(53,module_name, mxref_value);
passovr_1($3, $&, module_name);

£3.env_: = FUNCTION CLASS;

$S.mod_types_s = {($3.module_name_s : $5.]local_types_s)};

passdn_1($3, type_table);
passio2_11(5%4,35,ip _mcmxref);

tsymbol takle
passiol_1($3, ip_mxref);
stbl build3(s$3, $4, $5);
passdn_stbl3($3, $4, $5);

'visibility information
passovr2x_2($3, $4, $5, visible _types, visible names);

$S.error_msgs_s = [$3.error_msgs_s, $4.error_msgs_s, $S5.error_msgs_s];

}
! Virtual modules are for inheritance only, never used directly.

machine
: optionally virtual MACHINE interface state messages transactions temporals
concepts END
{

passup_2($3,module_name, mxref_ value);

passcvr_1($3, $8, module_name);

$3.env_i = MACHINE_CLASS;

$$.mod_types_s = {($3.module _name_s : $8.local_types_s)};

passdn_1($3, type_table);
passio2_1($5, $8,ip_mcmxref);

!symbol table

passiol _1($3, ip_mxref);

stbl buildé(s3, $4, $5, $6, $7, $8):
passdn_stbl6($3, $4, $5, $6, $7, $8);

'visibility information.
passovr_2($3,54,visible_types, visible_names);
passovr2x_2($4,55,$6,visible_types, visible_names):
passovr2x_2(S4,87,$8, visible_types, visible_names);

SS.error_msgs_s = [S3.error_msgs_s, $5.error_msgs_s, S$8.errcr_msgs_s]:

type
optionally virtual TYPE interface model messages transactions temporals concepts
END

passup_2($3,module_name, mxref value);

passovr_1($3, $8, module_name);

$3.env_i = TYPE CLASS;

$S.mod_types_s = {($3.module_name_s : $8.local_types s)} ;

$S.global_type_s = {($3.module_name_s : $3.module_name_s),
{? : string : UNDEFINEC_TYPE) };

passdn_1(S3, type_table);
passio2_1(85, $8, ip mcmxref);

!symbol table
passicl 1($3, ip_mxref);

130

stbl_build6($3, $4, $5, s$6, 57, $8);
passdn_stbl6(s3, $4, $5, $6, $7, $8);

'visibility information.
passovr_2($3,$4,visible types, visible_names);
passovr2x_2($4,$5,56,visible_types, visible names);
passovr2x_2($4,$7,$8, visible_types, visible_names);

$$.error_msgs_s = [$3.error_msgs_s, $5.error_msgs_s, $8.error_msgs_s);

definition
DEFINITION interface concepts END
{
passup_2($2,module_name, mxref_ value);
passovr_1(52, $3, module_name);
$2.env_i = DEFINITION_CLASS;
$S.mod_types_s = {($2.module_name_s : $3.local_types_s)};

passdn_1($2, type_table):
passiol_1(83, ip_mcmxref);

'symbocl table
passicl_1(s2, ip mxref);
stbl build2(s2, $3);
passdn_stbi2($2, $3);

'visibility information.
passcvr_2(S2, $3, visible types, visible_names);

$S.error_msgs_s = ($2.error_msgs_s, S$3.error_msgs_s];

instance
INSTANCE formal_name EQUALS actual_name END
{

$S.module_name_s = $2.name_text_s;
$2.env_i = INSTANCE CLASS;
$$.mxref_value_s = 32.xref value_s;

passioC_l(ip_mcmxre.);

!symbcl table
$5.d_error_s = check_simple_decl($$.ip mxref_ i, $$.module_name_s, $2.line_s,
$5.stbl names_i);
mk_simple _decl io($S.ip mxref, $$.d_error_s, $$.module_name_s,
$$.mxref_value_s);
stbl build2($2, $4):
passdn_stbl2($2, $4);

'visibility information.
$2.visible_types i = $S.type_table i (GLOBAL_TYPE_NAMES) ;
$2.visible_names_i = $S5.stbl_i($$.module_name_s);

passcvr _2(S2, $4, visible_types, visible_names);

$S.error_msgs_s = $S.d_error_s;

131

| INSTANCE foreach actual_name END
£
! Check this entire section of code for interfaces...
$$.module_name_s = $3.actual_name_text_s; !check this w/ Prof. B.
$$.mxref_value_s = get _new xref($3.actual_name_text_s);
$5.d_error_s = check_simple_decl($$.ip_mxref i, $$.module_name_s, $3.line_s,
$$.stbl names_i);
mk_simple_decl_ io($S.ip mxref, $$.d_error_s, $$.module_name_s,
$$.mxref_value_s);

passiol_1({ip_mcmxref);

!symbol table
stbl build2{$2,$3);
passdn_stbl2($2,$3);

tvisibility information

$2.visible types_i = $$.type_table_i (GLOBAL_TYPE_NAMES);
$2.visible_names_i = $$.stbl_i ($$.module_name_s);
passovr_2(82, $3, visible_ names, visible_types);

$S.error_msgs_s = $$.d_error_s;

! For making instances or partial instantiations of generic modules.
! The foreach clause allows defining sets of instances.

interface
: formal name inherits imports export
{

$$.module_name_s = $l.name_text_s;

$S.mxref value_ s = $l.xref value_s;

$l.args_i = "";

passdn_1(s$1, env);

$$.d_error_s = check_simple_decl($$.ip_mxref_ i, $$.module_name_s, $l.line_s,

$5.stbl_names_i);

mk_simple_decl_io($$.ip_mxref, $$.d_error_s, $S.module_name_s,

$$.mxref_value_s); -

'symbol table
stbl_build2(si, $3);
passdn_stbl2(Si, $3);

'visibility information
$l.visible_types_i = $$.type_table_i (GLOBAL_TYPE_NAMES);
$l.visible_names_i = S.stbl_i ($$.module_name_s) +|

{ (CURRENT_MODULE_TAG : $$.module_name_s)};
$3.visible_types_i = Sl.visible_types_s +I

$S.type_table_i (5S.module_name_s);
passovr_1(sl, $3, visible_names);
passup_2(S3, visible types, visible names);

S$$.error_msgs_s = [$5.d_error_s, $l.error_msgs_s):

! This part describes the static aspects of a module’s interface.
! The dynamic aspects of the interface are described in the messages.
A module is generic iff it has parameters.

inherits

hide

renames

ports

.
pan

export

~

.

L

! The parameters can be constrained by a WHERE clause.

! A module can irherit the behavior of other modules.

! A module can import concepts from other modules.

! A mcdule can export concepts for use by other modules.

inherits INHERIT actual_name hide renames
{}

! Ancestors are generalizations or simplified views of a module.
! A module inherits all of the behavior of its ancestors.

! Hiding a message or concept means it will not be inherited.

! Inherited components can be renamed to avoid naming conflicts.

HIDE name_list
{1}

! Useful for providing limited views of an actor.
! Different user classes may see different views of a system.
! Messages and concepts can be hidden.

rerames RENAME NAME AS NAME
{1}

! Renaming is useful for preventing name conflicts when inheriting
! from multiple scurces, and for adapting modules for new uses.

! The parameters, model and state components, messages, exceptions,
! and concepts of an actor can be renamed.

imports IMPCRT name_list FROM actual name
{

'visibility information.
passicl_2(visible_types, visible names):;

‘for now -- until importation implemented.

stbl_buildl($1);
passdn_stbil ($1);

'visibility information.
passiol_2(visible_types, visible names);

!symbci table
stbi buildC();

EXPORT nare_list

133

messages
: messages message

{
passio2_1($1, $2, ip_mcmxref);
lsymbel takle
stbl_build2(s1, $2);
passdn_stbl2($1, $2);
'visibility information
passdn2_2($1,$2, visible_types, visible_names);
lerror messages
$$.error_msgs_s = ($l.error_msgs_s, $2.error_msgs_s);

}

|

{
passio0_l{ip_mcmxref);
tsymbol table
stbl build0();
lerror messages
$$.error_msgs_s = "";

}

message

: MESSAGE formal message operator response
{

passio2_1(s2, $3, ip _memxref);

passovr_2($2, $3, xref_value, message_fargs);
passovr_1($2, $4, xref value);

!symbol table
stbi_build3(s2, $3, $4);
passdn_stbl3(s2, $3, $4);

'visibility information
passdn_2($2, visible_types, visible names);
passovr_2($2, $4, visible_types, visible names);

lerror messages
$S.error_msgs_s = [$2.error_msgs_s, $3.error_msgs_s, $4.error_msgs_s!;

~

response
response_body
{
passdr_1($1, xref_value);

!symbol table
stb. buildl($1);

134

passdn_stpll(S1);

‘visibi_ity information

passdn_2($1, visible_zypes, visible_names);
'error_messages
passup_l{$l, error_msgs);

i

| response_cases

{
passdn_1(S1, xref_walye);
!symbol table
stbl buildl(sl):
'visibility information
passdr_2($1, visible_types, visible_names);
!lerror_messages
passup_1{$l, errcr_msgs);
}

response_cases
! WHEN expression_list response_body response_ cases

{

passdn2_1($3,$4, xref value);

!symbol table
stbl_build3(52, $3, $4);
passdn_stbl3 (52, $3, $54);

'visibil

ity information
passdn3_2{

$2, $3, s4, visible_types, visible_names);

!error_messages
$S.errcr_msgs_s = [$Z.error_msgs_s, $3.error_msgs_s, $4.error msgs_sl;

CTHERWISE response_body
passdn_1(%2, xref value);
'symbcl table
stb._buildl($2);
passcr_stbll(52);

‘visipility infermazion
passdr_2(S2, visible_types, visible_names);

!e:rc:_messages
passugp_:(s2, error_msgs);

response_body
i chocse reply sends transitien
i

passdn_1(Sz, xref value);

135

choose

reply

stbl _build4(s1, $2, $3, $4);
passdn_stbi4($1, 52, $3, $4);

!visibility infcrmation
passdn_2(S1, visible_types, visible_names);
passovr3x_2($1, $2, $3, $4, visible_types, visible names);

'error messages
$$.error_msgs_s = ($l.error_msgs_s, $2.error_msgs_s, $3.error_msgs_s,
$4.error_msgs_s];

~

: CHOOSE ' (" field list restrictien)’
{
tsymbol table
stbl _build2($3, $4);
passdn_stb12($3, $4);

'visibility information
passiol_2($3, visible types, visible_names);
passovr_2($3, $4, visible types, visible_ names);

!error messages
$§.error_msgs_s = ($3.error_msgs_s, $4.error_msgs_s};

!'symbol table
stbl_build0d();

!visibility information
passio0_2(visible_types, visible_names);

'error messages
$S.error_msgs_s = "";

REPLY actual _message where
{
'symbol table
passio2_3(s2, $3, ip_stbl class, ip_stbl_names, ip_stbl _params);
$2.ip_stbi result_i = $$.ip stbl result_i +|
{($S.xref_value_i
$2.actual_text_s)};
passovr_1($2, $3, ip_stbl result):
passup_1($3, ip_stbl result);
passdn_stbl2(s2, $3);

!visibility information
passdn2_2($2, $3, visible_types, visible_names);

'lerror messages
$$.error msgs_s = [$2.error_msgs_s, S$3.error_msgs_s]; .
}
| GENERATE actual_message where ! used in generators
{
!sympbol table

136

passio2_3($82, $3, ip stbl_class, ip_stbl names, ip stbl params);

$2.ip _stbl resuit i = $5.ip_stbl result i + -7
{(S$.xref_value_i : $2.actual_text_s)};

passovr_1($2, $3, ip_stbl result);

passup_1($3, ip_stbl result);

passdn_stbl2(52, $3):

'visibility information
passdn2_2($2, $3, visible_types, visible names);

'error messages
$S.es1.r_...3s_s = [$2.error_msgs_s, 3$3.error_msgs_s];

stbl_build0();

ferror messages
$S.error_msgs_s = "";

sends
sends send
{
stbl build2(sil, $2);
passdn_stbi2 ($1, $2);
'visibility information
passdn2_2(Sl, $2, visiple_types, visible names);
lerrcr messages
$S.error_msgs_s = [$l.error_msgs_s, $2.error_msgs_s);
stbl buildl();
lerror messages
SS.error_msgs_s = "";
senc

optionali_foreach SEND actual_message TC actual_name where

stbl_build4 (8, $3, $5, $6);
passdn_stbl4(sl, $3, $5, $6);

'visibility information
passdn4_2(sl, $3, $5, $6, visible types, visible_names);

'error messages
SS.error_msgs_s = [33.error_msgs_s, S5.error_msgs_s, $6.error_msgs_s);

cransition

TRANSITION expression_.ist ! for describing state changes

137

stbl buildl(s2);
passdn_stbil(52);

'visibility infcrmation
passdn_2($2, visible_types, visible_names);

!error_messages
passup_1($2, error_msgs);

stbl bui1id0();

'error messages
$S.error_msgs_s = "";

formal_message
: optional_exception optional_ formal name formal arguments
{
$$.message_name_s = S$2.name_text_s;
$$.message_fargs_s = $3.name_fargs_s;
$2.args_i = $3.args_text_s;
$2.env_i = MESSAGE_CLASS;
passup_1($2, xref_value):

mk_corplex_decl($$.ip _mcmxref, $$.d_error_s, $2.name_text_s,
$2.xref_value_s, $3.name_fargs_s);

!symbol table
stbl build2($2, $3);
passdn_stbl2(s2, $3);

'visibility informaticn
passio2_2($2, $3, visible_types, visible_names);

check_complex_decl($$.ip_mecmxref_i, $2.name_tex:_s,
$3.name_fargs_s, $2.line_s, $$.stbl names_i):
$S.errcr_msgs_s = [$Z.error_msgs_s, $3.error_msgs_s);

actual _message
optional_excepticn optional_accual~name formal_arguments
{
$$.actual text_s = ($2.full name_s == "")
=> $3.name_fargs_s
¢ (33.name_fargs_s == "")
=> 52.full name_s
[$2.f1ll name_s, " (",
$3.name_targs s,")"];

stbl_build2(s2, $3);
passdn_stbi2 (52, $3);

‘visibility infermaticn

138

-

passcnZ_21($2, $3, visible_types, visible names);

'error messages
SS.error_msgs_s = [$2.error_msgs_s, $3.error_msgs_s};

where
WHERE expression_list
{
stbl buildl($2);
passdn_stbli ($2);

tvisibility information
passdrn_2($2, visible_types, visible names);

'lerror_messages
passup_l($2, error_msgs);

| Sprec SEMI ! must have a lower precedence than WHERE
stbl buildC();

'error messages

SS.error msgs_s = "";
}
H
optionally wvirtuail
: TUAL

VIR
)

cptional_exception
EXCEPTION
[
%prec SEMI

OPERATCOR ocperator list

{
passdn_2($2, xref value, message_fargs);
passicl_1(S52, i:p_mcmxref);

!symbol table
stbl _buiidl{(;

passdn_stbll($2);

'error messages
passup_1(S2, error msgs);

passiol_l{ip_mcmxref);

'symbo. table

stb. muilell);

139

$$.error_msgs_s = :

optional_foreach
foreach
{
stbl buildl ($1);
passdn_stbll($1);

'visibility information
passdn_2($1, visible_types, visible_names);

'error_messages
passup_1($1, error_msgs);

stbl_build0();

lerror messages
$S.error_msgs_s = "";

foreach
FOREACE ' (' field_list restriction ')’
{
stbl build2($3, s4);
passdn_stbl2($3, $4);
!visibility irnformation
passio2 2($3, $4, visible_types, visible names);
'error messages
$S.error_msgs_s = [$3.error_msgs_s, S4.error_msgs_sl;
}
! foreach is used to describe a set of messages or instances
corncepts

concepts ccrcept

{
passdn2_1($i, $2, module_name);
catmapup2_1(S1,52,local_types);
passio2_1($1,$2, ip mcmxref);

!symbol table

’ stbl build2 (31, $2);
passdn_stbl2(sl, $2);

'visibility infcrmation
Passdn2_2(51, $2, visible_types, visible names);

‘error messages
$S.error_msgs_s = (Sl.error_msgs_s, S$Z.error_msgs_s};

140

: CONCEPT forma. name ':

_ {{? : string : UNDEFINED_TYPE)};
ip_moemxref);

$S..cca. types s =
passiol 1 m
!symbzl table
stbl_buildld{);

lerrror messages
$S.error_msgs_s = "";

’

type_spec where
! constants

{

$$.local_types_s = ($4.type_name_text_s == SPEC_LIBRARY MODULE_type)
-> { ($2.name_text_s : [$2.name_text_s, "@€", $$.module_name_i)) }
¥
¢ (2 1 string : UNDEFINED_TYPE) j;

passup 1(52, xref_value):;

$$.d_error_s = check_simple_decl($S.ip mcmxref i, $2.name_tex:i_s, $2.line_s,

$5.stbl_names_i};
mk_simple_dec._io($5.ip_mcmxref, $5.d_error_s, $2.name_text_s,
S2.xref_value_s):

!symbcl takle

SZ.args_i = "";

$z.erv_i = CONCEPT_CLASSI;
stbl build3(s2, s$4, S$S);
passdr._stbl3(5z, 54, 5%

'visibility irnfcrmation
passdrn_2($2, visible_types, visible names);
passcvrix_7($2, $4, $5, visibie_types, visible names);

-- inzcmplete for now...
rro

_error_s, S2.error_msgs_s, S54.errcr_msgs_s,
rror_msgs_sl;

CONCEPT

fcrmal_name formal_ arguments where VALUE value_argqguments where
! furcticns, defined with preconditions and postconditions
i
$5..oca._types_s = { (? : string : UNDEFINED_TYPE) };
passup_1(S2, xref value);
$$.¢_error_ s = check_comp.ex_decl($S.ip mrmxref i, $2.name_text_s,

$3.name_fargs_s, $2.line_s, $S.stbl_names_i);
mk_complex_decl($S5.ip mcmxref, $S.d _error_s, $2.name_texL_s,
Sz.xref value_s, $3.name_fargs_s);

!symbzl tacle

S2.args_: = S3.args_text_s;
S50.erw o7 TON CLAlzz:

141

passovr_1(52, $6, xref_ value);
stbl build5(s2, $3, $4, $6, $7);
passdn_stbl5(52, $3, 54, 56, $7);

'visikbility information.

passdn_2($2, visible_types, visible names);
passovr_2($2, $3, visible_types, visible names);
passovr2x_2($3,54,56, visible_types, visible names);
passovr_2($6, $7, visible_types, visible names);

'error messages ~- incomplete for now...
$$.error_msgs_s = [$5.d error_s, $2.error_msgs_s, $3.error_msgs_s,
$4.error_msgs_s, $6.error_msgs_s, $7.error_msgs_s];

value_arguments ! a new nonterminal to simplify equations.
formal_arguments
{
!symbol table
passiol_3($l, ip stbl class, ip_stbl names, ip_stbl params);
passdn_1($1, ip_stbl result);
$S.ip_stbl_result_s = (Sl.args_text_s == ""
-> $1l.ip stbl_result_s
S$l.ip_stbl result_s +]
{($$.xref_value_i :
{ "(", $l.args_text_s, ™)™])};

passdn_stbll($1);

lvisibility information
passiol_2($i, visibie_types, visible_names):

'lerror_messages
passup_1(S1, error_msgs);

model ! data types have conceptual models for values
MODEL formal_arguments invariant
{
stbl build2{s2, $3);
passdn_stbl2($2, §3);

!visibility information
passiol_2($2, visible_types, visible_names);
passovr_2($2,53, visible_types, visible_names):;

'error messages
$S.error_msgs_s = [$2.error_msgs_s, $3.error_msgs_s]);

state ! machines have conceptual models for states
STATE formal_arguments invariant initiaily
stbl build3(s2, $3, $4);
passdr._stbl3(S2, $3, S4);

142

'visibility information
passiol_2($2, visible_types, visible names);
passovr2x_2(52,$3,54, visible_types, visible names);

'lerror messages
$S.error_msgs_s = [$2.error_msgs_s, $3.error_msgs_s, $4.error_msgs_s);

invariant ! invariants are true for all states or instances
INVARIANT expression list

{
stbl buildl($2);
passdn_stbll($2);

'visibility information
passdn_2($2, visible_types, visible names);

!error_messages
passup_1($2, error_msgs);

initially ! inizial conditions are true only at the beginning
¢ INITIALLY expression_list
{
stbl buildl($2);
passdn_stbl1(82);

'visibility information
passdn_2($2,visible_types, visible_names);

'error_messages
passup_1(S$2, error_msgs);

transactions
transactions transaction
{
stbi_build2($l, $2);
passdn_stbl2($1, $2);

‘visibility information
passio2_2($1,$2,visibie_types, visible_names);

'lerror messages
$S.error_msgs_s = [Sl.error_msgs_s, $2.error_msgs_s);

stbl build0();
passicC _2(visible_types, visible_names);

'error messages
$S.errcr_msgs s = ";

Transacilcn

143

TRANSACTION formal name EQUALS action_list where
{

$2.args_i = "";

$2.env_i = TRANSACTION_ CLASS;

tsymbol table
stbl build3(s$2, s$4, $5);
passdn_stbl3($82, $4, $5):

'visibility information

passdn_1($2,visible_types);

$$.d_error_s = check_simple_decl($$.visible_names_i, $2.name_text_s,
$2.line_s, $$.stbl names_i);

mk_simple_decl($$.visible_names_i, $$.d_error_s, S$2.name_text_s,
$2.xref_value_s, S.visible names_s);

passovr2x_l(52, $4, $5, visible_types);

passovr2x_1($$, $4, $5, visible_names):

'error messages
$S.error_msgs_s = [$2.error_msgs_s, S4.error_msgs_s, $S5.error_msgs_s];

! Transactions are atomic.
! The where clause can specify timing constraints.

action_list
: action_list ’;’ action $prec SEMI ! sequence
{
stbl _build2($1, $3);
passdn_stbl2($i, $3);

'visibility information
passdn2_2($1, $3,visible_types, visible names);

lerror messages
$S.error_msgs_s = [$l.error_msgs_s, $3.error_msgs_s];
I
| action

‘

{
stbl_buildl(sl);
passdn_stbl1(81);

'visibility information
passdn_2($1, visible types, visible_names);

'error_messages
passup_1($1, error_msgs):

action
action action sprec STAR ! unordered set of actions
stbli build2($1, $2);
passdn_stbl2(s1, $2);

'visibility information
passdn2_2($1, $2, visible_types, visible_names);

lerrcr messages

144

$S.error_msgs_s = {Sl.error_msgs_s, $2.error_msgs_s];
}
I IF alternatives FI ! choice
{
stbl buildl($2);
passdn_stbli($2);

'visibility information
passdn_2(52, visible_types, visible_names);

!lerror_messages
passup_1($2, error_msgs);

! DO alternatives OD ! repeated choice
{
stbl buildl($2):
passdn_stbll($2):

'visibility information
passdn_2(s2, visible_types, visible_names);

'error_messages
passup_1($2, error_msgs);
}
| actual_name ! a normal message or subtransaction
{
stbl buiswi($l);
passdn_stbll(S1);

'visibility infermation
passdr_2(Sl, visible_types, visible_names);

- lerror_messages
passup_l(Si, error_msgs);
i
! EXCEPTION actual_name ! an exception message
{

stbi_builidi($2);
passdn_stbll(52);

'visibility information
passdn_2(S2, visibie_t wes, visible_names);

lerror_messages
passup_l($2, error_msgs);

alternatives
alternatives OR guard action_list
{
stbli_build3(si, $3, $4);
passdr_stbl3(S1, $3, $4);

'visiblliity information
passani_2(Sl, $3, $4, visible_types, visible_names);

'error messages

$S.errcr msgs_s = 'Sl.errcr msgs s, $3.error_msgs_s, S$4.errcr_mscs_s.;

145

}
| guard action_list
{
stbl_build2(s1, $2);
passdn_stbl2(51, $2);

'visibility information
passdn2_2($1, $2, visible_types, visible names);

'error messages
$$.error_msgs_s = [$l.error_msgs_s, $2.error_msgs_s];

guard
: WHEN expression ARROW
{
stbl buildl($2);
passdn_stbll($2);

'visibility information
passdn_2($2, visible types, visible_names);

'error_messages
passup_1($2, error_msgs);

stbl _build0();

'error messages
$S.error_msgs_s = "";

temporals
temporals temporal
{
stbl build2(sl, $2);
passdn_stbl2(s1, $2);

'visibility information
passio2_2(S1, $2, visible_types, visible names);

lerror messages
$$.error_msgs_s = [Sl.error_msgs_s, $2.error_msgs_s];

stbl buildl();
passio0_2(visible_types, visible_names);

!lerror messages
$S.error_msgs_s "

tempora.
TEMPORAL NAME where response
{

$S.xref_value_s = gei new_xref($2.%text);

146

$4.xref value_ i = $S.xref vaiue_s;

'symbol table

$3.ip_stbl class_i = $S.ip_stbl_class_i +|
{{$S.xref_value_s : TEMPORAL_CLASS) };

$3.ip_stbl names_1 = $S.ip stbl names_i +|
{($$.xref_value_s : $2.%text)};

passovr_2($3, $4, ip_stbl_class, ip stbl names);

passup_2($4, ip_stbl_class, ip_stbl_names);

passio2 2($3, $4, ip_stbl params, ip_stbl result);

passdn_stbl2($3, $4);

tvisibility information

passdn2_1($83, $4, visible_types):

$$.d_error_s = check_simple_decl($$.visible_names_i, $2.%text,
$2.%line, $$.stbl names_i);

mk_simple decl($$.visible_names_i, $$.d_error_s, $2.%text,
$$.xref_value_s, $$.visible names_s);

passovr2x_1($$, $3, $4, visible_names);

lerrer messages
$S.error_msgs_s = [$5.d_error_s, $3.error_msgs_s, $4.error_msgs_s];

! Temporal events are trigged at absolute times,

! in terms of the local clock of the actor.

! The "where"™ describes the triggering conditions
! in terms of TIME, PERIOD, and DELAY.

optional_ formal name
formal name
{
passup_3(S1, name_params, name_text, line);
passdrn_2($l, args, env);
passup_1($1, xref value);

!symbel table
stbi_buildi(sl):
passdn_stbll(S1);

!visibiiity information
pessicl_2(S81, visible_types, visible_names);

'error messages
passup_1(51, error_msgs);

$S.line_s = -1;

$$.name_params_s = "";

SS.name_text_s = "";

$s.xref_value_s = get_new_xref($S.args_1i);

'symbol table

ada_elem($S.ip stbl class_i, S$$.xref_value_s, $S.env_i, $S.ip_stbl_class_s);
add_eiem(SS.{ip sitc._names_i, S$S.xref value_s,$$.args_i, $$.ip_stbl names_s):
passiol_2(ip_stbl_params, ip_stbl_result};

147

'visibility information
passio0_2(visible_types, visible_rames);

lerror messages
$S.error_msgs_s = "";

formal name
: NAME formal parameters .
{
$$.line_s = $1.%line;
$S.name_text_s = Sl.%text;
passup_l($2, name_params);
$5.xref_value_s = get_new_xref ($l.%text);

!symbol table
$$.signature_s = ($$.args_i == "")
- LA
¢ ("(", S.args_i, ")" }:
add_elem($$.ip_stbl_class_i, S.xref_value_s, $S5.env_i, $2.ip_stbl class_i);
add_elem($$.ip_stbl names_i, $S.xref_value_s,
$l.%text * $$.signature_s, $2.ip_stbl names_i);
add_elem($$.ip_stbl_params_i, $$.xref_value_s, $2.name_params_s,
$2.ip_stbl_params_i);
passdn_1($2, ip stbl result);
passup_4($2, ip_stbl _class, ip stbl names, ip stbl params, ip_stbl_result);
passdn_stbl1($2);

! visibility information
passiol_2($2, visible_types, visible_names);

'error messages.
passup_1($2, error_msgs);

formai_parameters ! parameter values are determined at specification time
'{’ field_list '}’ where
{
SS.name_params_s = $2.fieldpattern_s;

!symbcl table
stbl build2(s2, $4);
passdn_stbl2($2, 54);

! visibility information
passiol_2($2, visible_types, visible_names);
passovr_2($2, $4, visible_types, visible_names);

!error messages.
$5.error_msgs_s = {$2.error_msgs_s, $4.error_msgs_s];

S.name_params_s = NULL_STRING;

!symbol table
stbl_buildl();

!visibility information
passiol_2(visible_types, visible_names);

! error messages
$S.error_msgs_s = "";

formal_ arguments ! arguments are evaluated at run-time
"(* field_list ')’
{
$S.name_fargs_s = S$2.fieldpattern_s;
$5.args_text_s = $2.text_s;

!symbol table
stbl buildl($2);
passdn_stbl1($2);

'visibility information
passiol 2($2, visible_types, visible_names);

!error messages
passup_1(52, error_msgs);

$$.name_fargs s = "";
$$.args_text_s = "";

!symbol table

stbl buildQ{():;

!visibility information
passiol_2(visible_types, visible_names);

'error messages
$$.error_msgs_s = "v;

fieid list ’,’ field

{
SS.fieldpa::ern_s = {Sl.fieldpatternAS, ELEM_DELIMITER,
$3.fieldpattern_s);
$S.text_s = [Sl.text_s, ", ", $3.text_s]);
!symbol table
stbl build2(s1l, $3);
passdrn_stbi2($1, $3);
!visibility information.
passio? 2{$i, 53, visible_types, visible_names);
'error messages
SS.error_msgs_s = {($l.error_msgs_s, $3.error_msgs_sj;
!
fleld
149

passyp_2(51, fieldpattern, text};

!.ymbol table
stbl buiidl{$1l);
passdn_stbll($1);

'visibility information
passiol_2($1, visible_types, visible_names);

'error messages
passup 1($1, error_msgs);

field
: declname_list ’:’ type_spec
{
$l.name_type_text_i = $3.type name_text_s;
$S.text_s = [$l.text_s, " : ", $3.type name_text_s);

$l.name_type_value_j = $3.type_name_value_s;
passup_1(sl, fieldpattern);

!symbol table
stbl build2(sl, $3);
passdn_stbl2($1, $3);

'visibility information.
passiol_2($1, visible_types, visible_names);
passdn_2($3, visible_types, visible_ names);

'error messages
$S.error_msgs_s = {$l.error_msgs_s, $3.error_msgs_s];
y
! 'S’ NAME ’:' type_ spec
{
$$.f4eldpatterr_s = ["$", $2.%tex:, ":",S4.type_name_value_s];

$S.text_s = [“"S$", $2.%text, ™ : ", S4.type name_text_s};

!symbol table

$$.xref_value_s = get_new_xref($2.%text);

add_elem($$.ip_stbl class_i, $$.xref value_s, VARIABLE CLASS,
$4.ip_stbl class_i);

add_elem(ss.ip_stbl_names_i, $$.xref value_ s, "S$"~sZ.%text,
$4.ip_stbl names_i);

add_elem($3.ip_stbl_result_i, $5.xref_value_s, S$4.type_name_value_s,
$4.ip_stbl result_i);

passdn_1($4, ip_stbl _params);

passup_4($4, ip_stbl class, ip_stbl_names, ip_stbl_result, ip_stbl_params);

passdn_stbll($4);

'visibility irformation
$$.visible_types_s = ($4.type_name_value_s == SPEC_LIBRARY MODULE_type)
-> $S.visible_types i +I
{({$2.%text : [$2.%text, "@",
"__local" 1)}
S$S.visible_types i;
$5.d error_s = check_simple decl($5.visible r .mes i, $2.%text,
$2.%.ire, $S.sipl _names_:);

150

mk_simple_decl_io(SS.visible_names, $$.d_error_s, $2.%text, $S.xref_value_s);
passdn_1($4, visible_types);
passovr_1($$, $4, visible_names):

errcr messages
$$.error_msgs_s = {$S.d_error_c, $4.error_msgs_s];
}
| QUESTION_MARK
{
$S.fieldpattern_s = "2";
$S.text_s = "2?";

!symbol table
stbl_buildd();

'visibility information
passio0_l(visible_types);

lerror messages
$S.error_msgs_s = error_message (UNRESOLVED_TYPE, $l.%line);

type_ spec
actual_name ! name of a data type
{
$$.type_name_text_s = S$l.actual name_text_s;
$$.type_name_value_s = 5$5.visible_types_i (Sl.actual_name_text_s);

!'symbol table
stbl buiidl(sl):
pas=d~ stb 1 (Si);

'visibility information
passdn_2(51, visible types, visible _names);

ssages
¢ = error_message (UNDECLARED TYPE, $l.line_s,
Si.actual_name_text_s);
S5.error_msgs_s = ($S.visible_types i ($l.actual_name_text_s} ==
UNDEFINED_TYPE)
=> S.tmp_msg

“ nn’.
QUESTION_MARK
!
SS.type name_text s = "2";
$S.type rare_value_s = "2";

'symbcl table
ste._buildd();

‘error messages
$S.error msgs_s = errcr message (UNRESOLVED_TYPE, Si.%line);

151

! This structure was added so that a name list used for declarative
! purposes (e.g. in a field) could be easily distinguished from a name list
! used inr an applicative structure {(e.g. imports, export, hide).
! This lessened the actual attribute load of the name_list structure.
declname_list
: declpame_list NAME
{

$$.xref_value_s = get_new_xref (2. Stext);

$$.text s = [Sl.text_s, " ", $2.%text];

passdn_2(S1l, name_type_value, name_type_text);

$$.fieldpattern_s = [$l.fieldpattern_s, ELEM DELIMITER,

$2.8text, ":", S$$.name_type_value i };

'symbol table

passdn_4($1, ip_stbl_class, ip_stbl_names, ip stbl result, ip stbl params);

add_elem(Sl.ip_stbl_class_s, $$.xref_value_s, VARIABLE CLASS,
$$.ip_stbl_class_s);

add_e'em($l.ip_stbl names_s, $$.xref_value_s, $2.%text, $$.ip_stbl names_s};

add_elem(Sl.ip_stbl_result_s, $$.xref_value_s, $$.name_type value_i,
$S.ip_stbl result_s);

passup_1(Sl, ip stbl params);

passdn_stbll($1);

'visibility information
passdn_2($1, visible_ types, visible names);
$$.d_error_s = check_simple_decl($l.visible names_s, $2.%text,
$2.%line, $S.stbl names_i);
mk_simple_decl($l.visible_names_s, $5.d_error_s, $2.%text,
$5.xref_value_s, $$.visible_names_s};
$$.visible_types_s = ($$.name_type_text_i == SPEC_LIBRARY_ MODULE_type)
-> 81. visible_types_s +|
{(S2.%text : [$2.%text, "@",
" local™ N}
Si.visible types_s;

$S.error_msgs_s = [Sl.error_msgs_s, $$.d_error_s);

A

I NAME

$S.xref_value_s = get_new_xref($l. %text);
ss.fieldpattern_s = [Sl.%text, ™:", $S.name_type value_i}l;
SS.text_s = §$l.%text;

!'symbol table
add_elem(5$.ip_stbl_class_i, $$.xref_value_s, VARIABLE CLASS,
$S.ip_stbl class_s);
add_elem($S.ip_stbl_names_i, $S.xref_value_s, $1.%text, $$S.ip_stbl_names_s);
add_elem(5S.ip_stbl_result_i, $$.xref_value_s, $$.name_type value_ i,
$$.ip_stbl_result s);
passiol_1(ip_stbl_params);

'visibility information
! -- eventually need to make local with module name...
$S.visibie_types_s = ($S.name_type_text_ i == SPEC_LIBRARY MODULE_type)
-> $$. visible_types i +|
{(SZ.%text : [S51.%text, "B",
" _local™ 1)}
* SS.visible_types_i;

152

$$.d_error_s = check_simple_decl($$.visible_names_i, 51.%text,
$l.%.ine, $$.stbl _names_i);
mk_simple_decl_io(Ss.visible_names, $$.d_error_s, $1.%text,
$S.xref_value_s);

$S.error _msgs_s = $5.d_error_s;

name_list
¢ name_list NAME
{1
| NAME
{}

~.

optiornal_actual name
: actual_name
{
passup_4(51, actual name_text, actual_params, full name, line);

stzl buildi($i):
passdn_stbll($1);

!visibility information
passdr_2(S1, visible types, visible names);

'errer_messages
passup_1(S., error_msgs);

$s.line_s = -1;
$$.actual_name_tex:_s =
$5.actual_params_s = "";
$$.full name s = "";

nn,
’

stbl buildS();

actual_name
: NAME actial_parameters
{

SS.actuaL_name_tex:_s = $l.%text;

$S5..ire s = Sl.%line;

passup_1($2, actual params);

$S.full _rame s = ($2.actual_params s == "")
-> Sl.%text
¢ [sl.¥text, "{", $2.actual_params_ s, "}"];

!symccl taple

stbl buildl{(s2);
passdr._stbli(52);

153

actual_parameters ! parameter values are determined at specification time

actual_arguments ! arguments are evaluated at run-time

'visibility information
passdn_2($2, visible_types, visible names);

'error_messages
passup_1($2, error_msgs);
}

'{' arg_list '}’
{

$$.actual_params_s = $2.arglist_text_s;

stbl_buildl($2};
passdn_stbl1($2);

'visibility information
passdn_2($2, visible_types, visible names);

'error_messages
passup_1($2, error_msgs);

fprec SEMI ! must have a lower precedence than ' {’
$S.actual_params_s = "";
stbl build0();

lerror messages
$$.error_msgs_s = "";

' (' arg_list ‘)’
{

$S.full_args_s = (82.arglist_text_s == "")
- nn

& (n(", $2.arglist_text_s, ")"];

stbi_buildl(82);
passdn_stbll(52);

'visibility information
passdn_2($2, visible_types, visible_names);

lerror_messages
passup_1($2, error_msgs);

Sprec SEMI ! must have a lower precedence than '’ (’
stbl buildC();

'lerrcr messages
SS.error _msgs_s = "";

arg_i:s* ',' arg fprec COMMA

154

$S.arglist_text_s = [Sl.arglist_text_s, ACTUAL DELIN, S3.arg_text_s.;

stbl_build2(sl, $3);
passdr_stbiZ ($1, $3);

'visibility information
passdn2_2($1, $3, visible_types, visible_names);

'error messages
$$.error_msgs_s = [Sl.error_msgs_s, $3.error_msgs_s);

$S.arglist_text_s = Sl.arg_text_s;

stbl_buildl{sl):;
passdn_stbll(sl);

'visikbility information
passdn_2($1, visible_types, visible_names):

'errcr messages
passup_1(51, error_msgs);

expression
$$.arg_tex:t_s = Sl.xter_iype s;

stbl buildl(si);

passcr_stell(S1);
‘visipility information

passdn_2($1, visible_types, visible names);
'error_messages
passup_1{(51, error _msgs);

SS.arg _texi_s = Sl.xter type_s;

stpl_buildi(Sl);
cassdr._stbll(S1);

'visibility infecrmation
passdn_2(52, visible types, visible names);

'error_messages
passup_1($1, error_msgs);

express.orn_llst

express.crn_list ',' expression $prec COMMA
all types in an expression list must be the same
-xter _tyge 5 = Sl.xler type s;

155

stbl _build2(si, $3);
passdn_stbl2($l, $3);

'visibility information
passdn2_2(si, $3, visible types, visible names);

!error messages
$S.error_msgs_s = ($l.error_msgs_s, $3.error_msgs_s];
}
| expression Sprec COMMA
{
passup_1(S1, xten_type);

stbl buildl(sl);
passdn_stbll($1);

'visibility information
passdn_2($1, visible_types, visible names);

!error_messages
passup_1($1l, error_msgs);

expression
quantifier ' ('’ field_list restriction BIND expression ')’
{

$$.xter_type s = ":boolean";

stbl build3($3, $4, $6);
passdn_stbl3($3, $4, $6);

'visibility information
passdn3_2($3, $4, 56, visible_types, visible_names);

'error messages
$S.error_msgs_s = {$3.error_msgs s, S4.error_msgs_s, $6.error_msgs_s.;
) -
i actual name actual_arguments
;

$S.xten_type_ s = [REF_SYMBOL, $1.full name_s, $2.full_args_s.:

stbl build2rsl, $2);
passdn_stbl (S$1, $2);

'visikbility information
passdn2_2($1, $2, visible_types, visible_names);

lerror messages

§$.error_msgs_s = [Sl.error_msgs_s, $2.error_msgs_s];
}
! actual_name '8’ actual_name actuval_arguments
{

$5.xten_type_s = [REF_SYMBOL, $l.full name_s, "€", $3.full_name_s,
$4.full_args_si:

stb._build3(sl, $3, s4);
passdn_stbl3(S1, $3, 54;;

156

‘visibility information
passdn3_2($1, $3, $4, visible_types, visible_names);

'error messages

$$.error_msgs_s = ($l.error_msgs_s, $3.error_msgs_s, S4.error_msgs_s];
NOT expression Sprec NOT
{
$$.xten_type_s = [REF_SYMBOL, $l.%text, (", $2.xten_type_s, ")");
stbl buildl ($2);
passdn_stbll($2);
tvisibility information
passdn_2 (52, visible_ types, visible names);
lerror_messages
passup_1l1($2, error_msgs);
}
expression AND expression tprec AND
{
$5.xten_type_s = [REF_SYMBCL, $2.%text, "(", $l.xten_type_s,
ACTUAL_DELIM, $3.xten_type_ s, ")"]:
stbl build2(sl, $3);
passdn_stbl2(51, $3):
'visibility information
passdn2_2($1, $3, visible_types, visible names);
‘lerrcr messages
$S.error_msgs_s = [Sl.error_msgs_s, $3.error_msgs_s);
expression OR expression $prec OR
{
S$S.xten_type_s = [REF_SYMBOL, $2.%text, " (", S$l.xter_type_s,
ACTUAL_DELIM, “3.xten_type_s, ")"]:
stpbl_build2($Z, $3);
passdn_stEl2(sl, $3);
'visibility irfeormatior
passdr.2_2(5i, 53, visible types, visiktle_names);
'error messages
$$.error_msgs_s = [Sl.errcr_msgs s, $3.error_msgs_s];
}
expression IMPLIES expression Sprec IMPLIES

{

$S.xten_type_s = [REF_SYMBOL, $2.%text, "(", $l.xten_type_s,
ACTUAL_DELIM, $3.xter_type_s, ")"]

sibl_build2(sI, $3);
passdn_stpbl2($l, $3);

'visibility infecrmaticorn
passan2_2($., $3, visibie_types, visible names);

}
| expression IFF expression Sprec IFF
{
$S.xten_type_s = [REF_SYMBOL, $2.%text, "(", Sl.xten_type_s,
ACTUAL_DELIM, $3.xten_type_s, ")"];

stbl build2(s1, $3);
passdn_stbl2($1, $3);

'visibility information
passdn2_2($1, $3, visible_types, visible names);

'error messages
§S.error_msgs_s = [$l.error_msgs_s, $3.error_msgs_s);
}
| expression LT expression Aprec LE
§
$S.xten_type_s = [REF_SYMBOL, "<" , "(", $l.xten_type_s,
ACTUAL_DELIM, $3.xten_type s, ")"];

stbl build2(sl, $3);
passdn_stbl2($1, $3);

!lvisibility information
passdn2_2($1, $3, visible_types., visible names);

!error messages
$$.error msgs_s = [$l.error_msgs_s, $3.error_msgs_s];
}
| expression GT expression Sprec LE
{
$S.xter_type_ s = (REF_SYMBOL, ">", "(", $l.xten_type s,
ACTUAL_DELIM, $3.xten_type_s, ")" };

stbl _build2($1l, $3);
passdr_stbl2($1, $3);

'visibility information
passdn2_2(S1, $3, visible_types, visible_names);

'error messages
SS.error_msgs_s = [Sl.error_msgsvs, SB.error_msgs_s};
}
! expression EQUALS expression $prec LE
{
S.xten_type_s = [REF_SYMBOL, "=", "(", Sl.xten_type_s,
ACTUAL_DELIM, $3.xten_type_s, ")" 1;

stbl _build2($1, $3);
passdrn_stbl2($1, $3);

!visibility information
passdn2_2($1, $3, visible_types, visible names);

'errcr mcsosages

$S.error_msgs_s = [$l.error _msgs_s, $3.error_msgs_sl;
}
exgressior LE expression tprec LE
{
$$.xten_type . = [REF_SYMBOL, $2.%text, "{", $l.xten_type s,

ACTUAL_DELIM, $3.xter_type s, ™" 1;

158

stbl build2($1, $3});
passdn_stbl2($1, $3);

'visibility information
passdn2_2(sl, $3, visible_types, visible names);

'error messages
$$.error_msgs < - (${l.error_rs3s_s, $3.error_mags a];
}
expression GE expression Sprec LE
{
$$.xten_type_s = [REF_SYMBOL, $2.%text, "(", $l.xten_type_s,
ACTUAL_DELIM, $3.xten_type s, "));

stbl_build2(s1, $3);
passdn_stbl2($1, $3);

'visibility information
passdn2_2(sl, $3, visible_types, visible_names);

lerror messages
$S.error msgs_s = ($l.error_msgs_s, $3.error_msgs_s);
)
expression NE expression Sprec LE
{
$$.xt. 1_type_s = [REF_SYMBOL, 52.%text, "(", $l.xten_type_s,
ACTUAL_DELIM,$3.xten_type s, ™)"];

stbl_build2($1, $3);
passdan_stbl2($1, $3):

!visibility information
passdrz_2(si, $3, visible_types, visible_names):
lerror messages
$S.error _msgs_s = ($l.error_msgs_s, $3.error msgs_s);
3
expressior NLT expression $prec LE
{
S$.xter_type_s = 'REF_SYMBOL, $2.%text, " (", Sl.xten_type_s,
CTUAL_DELINM, $3.xten_type_ s, ")");

stbl build2(S$1, $3);
passa-_stpbl2(Si, $3);

'visibil:ity information
passdn2_2($1, $3, visible_types, visible names);

lerrcr messages
S$.errcr_msgs_s = [Si.error_msgs_s, $3.error_msgs_s];
3
expressicr. NGT expression Sprec LE
S.xten_type_s = [REF_SYMBOL, $2.%text, "(", $l.xten_type s,
ACTUAL_DELIM, $3.xten_type_s, ")"];

stel buiid2(sI, $3);
passdr_sibl2($i, $3);

159

passdn2_2(81, $3, visible_types, visible names);

'error messages
$S.error_msgs_s = ($l.error_msgs_s, $3.error_msgs_s};
}
| expression NLE expression Sprec LE
{
$$.xten_type_s = [REF_SYMBOL, $2.%text, " (", $l.xten_type_s,
ACTUAL _DELIM, $3.xten_type_ s, ")"];

stbl_build2($l, $3);
passdn_stbl2($1, $3);

'visibility information
passdn2_2($1, $3, visible_types, visible names);

'error messages
$$.error_msgs_s = [$l.error_msgs_s, $3.error_msgs_s];
}
| expression NGE expression Sprec LE
({
$$.xten_type_s = [REF_SYMBOL, $2.%text, "(", S$l.xten_type_s,
ACTUAL_DELIM, $3.xten_type_s, ")" };

stbl build2($1l, §3);
passdn_stbl2($1, $3);

'visibility information
passdn2_2($81, $3, visible_types, visible_names);

'error messages
S$.error_msgs_s = [$l.error_msgs_s, $3.error_msgs_s];
)
| expression EQV expressicn fprec LE
{
$$.xten_type_s = [REF_SYMBOL, $2.%text, "(", Sl.xten_type_s,
ACTUAL_DELIM, $3.xten_type_ s, ™)"];

stbl build2($1, $3):
passdn_stbl2($1, $3):

'visibility information
passdn2_2(S1, $3, visible_types, visible_names);

!lerror messages
$$.error msgs_s = [$l.error_msgs_s, $3.error_msgs_s];
}
| expression NEQV expression Aprec LE
{
$S.xten_type_s = [REF_SYMBOL, $2.%text, " (", Sl.xten_type_s,
ACTUAL_DELIM, $3.xten_type s, ")")

stbl build2($1, $3);
passdn_stbl2($1, $3);

'visibility information
passdn2_2($1, $3, visible_types, visible_names);

'error messages
S$.error_msgs_s = {Sl.error_msgs_s, $3.error_msgs_s);

160

MINUSMARK expression Aprec UMINUS
{

SS.xten_type_s = [REF_SYMBOL, "-", "(", $2.xten_type_s, ™)"];

stbl buildl($2):
. passdn_stbll($2);

tvisibility information
passdn_2($2, visible_types, visible_names);

lerror_messages
passup_1($2, error_msgs);
}
! expression PLUSMARK expression Sprec PLUS
{
$$S.xten_type_s = [REF_SYMBOL, "+", " (", S$l.xten_type_s,
ACTUAL_DELIM, $3.xten_type_s, ")" };

stbl build2(s$l, $3);
passdn_stbl2 (51, $3);

'visibility information
passdn2_2($1, $3, visible_types, visible_names):;

lerror messages
$$.error_msgs_s = [$l.error_msgs_s, S$3.error_msgs_s];
}
| expression MINUSMARK expression Sprec MINUS
{
$$.xten_type_s = [REF_SYMBOL, "~", " (", Sl.xten_type_s,
ACTUAL_DELIM, S3.xten_type s, ™)"];

stbl_build2(sl, $3);
passdn_stbl2(sl, $3);

. tvisibility information
passdn2_2($1, $3, visible_types, visible_names):;

'error messages
$S.error_msgs_s = [Sl.errcr_msgs_s, $3.error_msgs_s];
}
i expression STARMARK expression $prec MUL
{
$S.xten_type_ s = [REF_SYMBCOL, "*", ™ (", Sl.xten_type_s,
ACTUAL_DELIM, $3.xten_type s, ")" 1;

stbl_build2(s1, $3);
passdn_stbl2(s1, $3);

'visibility information
passdn2_2($1, $3, visible types, visible_names):

'lerror messages

$$.error_msgs_s = [$l.error_msgs_s, $3.error_msgs_s};
¢ expression SLASH expression Sprec LIV
{
$S.xten_type_s = [REF_SYMBOL, "/", "(", $l.xten_type_s,

ACTURL_TELIM,S3.xter_type_s, ")" [

stbl_build2($l, $3);
passdn_stbl2(sl, $3);

'visibility information
passdn2_2($1, $3, visible types, visible_names);

'error messages
$S.error_msgs_s = [$l.error_msgs_s, $3.error_msgs_sj;
}
| expression MOD expression Sprec MOD
{
$S.xten_type_s = [REF_SYMBOL, $2.%text, "(", S$l.xten_type_s,
ACTUAL DELIM, $3.xten_type_s, ™)"];

stbl _build2($1, $3):
passdn_stbl2(s1, $3);

!visibility information
passdn2_2{$1, $3, visible types. visible_names);

lerror messages
$$.error_msgs_s = [Sl.error_msgs_s, $3.error_msgs_s];

}
| expression EXP expression tprec EXP

{
$S.xten_type_s = (REF_SYMBOL, $2.%text, " (", $Sl.xten_type_s,
ACTUAL _DELIM, $3.xten_type_ s, ™)"];

stbl build2($1, $3);
passdn_stbl2($1, $3);

'visibility information
passdn2_2($1, $3, visible types, visible names);

'error messages

$S.error_msgs_s = [$l.error msgs_s, $3.error_msgs_s];
}
| expression U expression tprec U
{
$$.xten_type_s = [REF_SYMBOL, $2.%text, "(", Si.xten_type_s,

ACTUAL_DELIM, $3.xten_type s, ™" 1;

stbl_build2($i, $3);
passdn_stbl2($1, $3);

'visibility information
passdn2_2($1, $3, visible_types, visible_names);

!error messages

$S.error_msgs_s = (Sl.error_msgs_s, $3.error_msgs_s);
)

! expression APPEND expression Sprec APPEND
{
$$.xten_type_s = [REF_SYMBOL, $2.%text, "(", $l.xten_type_s,
ACTUAL DELIM, $3.xten_type_s, ™)™];

stbl build2(si, $3);
passdn_stbl2($1, $3);

‘visipllity :nfecrmaticn

162

passdn2_2(S1, $3, visible_types, visible_names);

'error messages
Ss.error-msgs_s = [Sl.error_msgs_s, S3.error_msgs_s];
}
i expression IN expression sprec IN
{
$$.xten_type s = (REF_SYMBOL, $2.%text, (-, $l.xten_type s,
ACTUAL_DELIM, $3.xten_type_ s, ")];

stbl build2($1, $3);
passdn_stbl2($1, $3);

'visibility information
passdn2_2($1, $3, visible_types, visible_names);

lerror messages
$$.error_msgs_s = [$l.error_msgs_s, $3.error_msgs_s];
}
| STARMARK expression Sprec STAR
! *x is the value of x in the previous state
{
$$.xten_type_s = $2.xten_type_s:

stbl_buildl (§2);
passcn_stbll($2);

'visibility information
passdn_2($2, visible_types, visible_names);

'error_messages
passup_1(52, error_msgs);
1 'S’ expression fprec DCT
' Sx represents a collection of items rather than just one
' sl = {x, $s2) means sl = union({x), s2)
' sl = [x, $s2] means sl = append([x), s2)

$S.xten_type s = S2.xten_type s;

stbl buildi(s2);
passdr_stell(52);

'visibility information
passdr_2(S2, visible_types, visible_ names);

!lerror_messages
passup_1(52, error_msgs);

3
1

I expression RANGE expression $prec RANGE
P x in fa .. b} iff x in {a .. b} iff a <= x <= b
' 18 .. b! is sorted in increasing order

SS.xten_type_s = |REF_SYMBOL, $2.%text, "(", l.xten_type_s,
ACTUAL _DELIM, $3.xten_type_s, ")"];

stbil buiidZ(S1, 53);
passdr_sipl2(Sl, S3);

163

|

}

‘visibility information
passdn2_ 1($1, $3, visible_types, visible_names);

'error messages
$S.error_msgs_s = {$l.error_msgs_s, $3.error_msgs_s];

expression DOTMARK NAME sprec DOT

{

}

$$.xten_type_s = [REF_SYMBOL, ".%, "(", $l.xten_type_s,
ACTUAL_DELIM, ®"\"", 3$3.%text,"\"", ™)"];

stbl buildl($1);
passdn_stbll($1);

'visibility information
passdn_2($1, visible_types, visible_names);

'error_messages
passup 1($1, error_msgs);

expression LBRACK expression ‘)’ %prec

{

}

$$.xten_type s = [REF_SYMBOL, "(", "(", Sl.xten_type_s,
ACTUAL DELIM, S$3.xten_type_s];

stbi_buildZ($i, $3);
passdn_stbl2(S1, $3);

'visibility information
passdn2_2{$1, $5, v.s.blie_types, visible_names);

'error messages
$$.error_msgs_s = ($l.error_msgs_s, S$3.error_msgs_s];

' {’ expression ')’

{

}

' (' expression NAME '}’

passup_1($2, xten_type):;

stbl buildl(s2);
passdn_stbl11($2);

tvisibility information
passdr_2(52, visible_types, visible_names);

‘errcr messages
passup_1($2, error_msgs);

! expression with units of measurement
standard time units: NANOSEC MICROSEC MILLISEC SECONDS MINUTES HCURS
WEEKS

passup_1(S$2, xten_type):

stbl buildl($2);
passdn_stbll($2);

'visibility information
passdn_2(52, visible_types, visible_names);

164

DAYS

'error_messages
passup_1($2, error_msgs);
local time,

TIME ! The current

{

used in temporal events

$$.xten_type_s ":real”

stbl_build0{);

'error messages
$$.error_msgs_s = "";

}

DELAY ! The time between the triggering event and the response
(S.xten_type_s = ":real";
stbl buiidC();
'lerror messages
- wn,

$$.error_msgs_s
}
PERICD !

The time between successive events of this type
{
$$.xten_tvpe_s = ":real";
stbl buildl{);
‘error messages
SS.error_msgs_s = "";

literal
{

passup_1(S1, xten_type);

stbl_buildl(sl);

passdn_stbll($I);

visibility information

passdn_2($, visible_types, visible_names);

‘error_messages
passup_l1(S., errcr _msgs);

rg’

actual name !

literal with explicit type

!*** unsire about

this one.

passup 1($1,

xten_type);

stbl_buiid2($i, $3)
passdn_s:tbl2($1, $3

O R
cility

passarz_2($i, $3, v

‘visi

ressages

.error _msgs_s

AT

;

)

irformation

isibie_types, visible names);

(Si.error_msgs_s, $3.error _msgs_sl;

va.tce tc be specifieg later

nztefinec

165

$$.xten _type s = ":2";
stbl build0();

lerror messages
$$.error_msgs_s = "";

e ! An undefined and illegal value
$$.xten_type_s = “:!";
stbl build0{);

!error messages
$$.error_msgs_s = "%;
}
| IF expression THEN expression middle_cases ELSE expression FI
{
$$.xten_type_s = $4.xten_type_s;

stbl build4(s2, $4, $5, $7);
passdn_stbl4 (52, $4, $5, §7);

'visibility information
passdnd4_2($2, $4, 35, $7, visible_types, visible_names);

lerror messages
$$.error msgs_s = [$2.error_msgs_s, $4.error_msgs_s,
$5.error_msgs_s, $7.error_msgs_sj;

middle cases
middle_cases ELSE_IF expression THEN expression
{
stbl build3($1, $3, $5);
passdn_stbl3($1, $3, $5);

'visibility information
passdn3_2(S1, $3, $5, visible types, visible names);

lerror messages
$S5.error_msgs_s = [$l.error_msgs_s, $3.error_msgs_s, $S5.error_msgs_s];

stbl buildl();

terror messages
$S.error_msgs s = "";

quantifier
ALL

166

{1

| SUM

{1

PRODUCT

)

| SET
t

! MAXIMUM
(1

| MINIMUM
{1

! UNION
(.

| INTERSECTION
{)

restriction
SUCH expression
{

stbl_buildl($2);

'visibility infoermation
passdn_2($2, visible_types, visible names);

'error_messages
passup_1($2, error_msgs);

lerror messages
- $S.error_msgs_s = "";

INTEGER_LITERAL
{

$S.xter_type_ s = ":integer";
stbl buildl();

lerrcr messages
SS.error _msgs_s = "";
REAL_LITERAL

q

$$.xten_type s = ":real";
stbl buildo();

'error messages
SS.errcr msgs s = "";
}
CHAR_LITERAL
i

S$$.xter_type s = ":char";

stbi_buildl(y;

!error messages
$S.error_msgs_s = "";
)
I STRING_LITERAL
{

$$.xten_type s = ":string";

stbl buildo();

!error messages
$$.error_msgs_s = "";

}
| *#' NAME ! enumeration type literal

($$.xten_type_s = ":enumeration®;
stbl build0();
'error messages
§$5.error_msgs_s = "";
! iBRACK expressions ']’ ! sequence literal

$$.xten_type_s = [":sequence{",$2.xten_type_s, "}"};

stbl_buildl($2);
passdn_stbll(52);

'visibility information
passdr._2($2, visible_types, visible_names,;

'lerror_messages
passup_1(52, error_msgs):

i '{’ expressions '}’ ! set literal
$$.xter_type_s = ["-set{", $2.xten_type_s, "}"];
stbl buildi($2);
passdr_stbl1($2);

'visibility information
passdn_2($2, visible_types, visible_names);

!lerror_messages
passup_1($2, errcr_msgs);

i "1’ expressions ’;’ expression ’}’ ! map literal
$$.xten_type_s = ["map{", $2.xten_type_s, ACTUAL_DELIM,
$4.xten _type_ s, "}");
stbl build2($2, $4);

passdn_stbl2(52, $4);

‘visibility information
passdr2_2(52, $4, visibple_types, visikle names):

168

e

5.errer msgs_s = iS<.error msgs_s, S4.error msgs _s);

' LBRACX pa.r list ' ! tuple literal
t

$S5.xter type s = | "tuplei{", S$2.xten_type_ s, "}"};

stbl buildl($2):
passdn_stbl1(52);

'visibility inforration
passdn_2($2, visible_types, visible names);

lerrcr_mressages
passup_1 (52, error _msgs);

b ! one_of literal
SS.xter type_ s = $2.type_s;

stp._bu:ldi(s2);

passdn_stpll($2);

‘visibility information
passdr_2(%2, visic.e types, visible names);

'error_messages
passup_1(52, errcr msgs);

" relaticr litera.s are sets cf tuples
exsress.ons
eXCress.cr LISt

pass.g_l{S51, xter_type);

cassar stz l(SL

str. kbolldal(Si;
)

ot

visio.e lypes, visible rames);

T
3
4]
%]

2
1
LS}

~
+

errcr_messages
a

passipf LS., errcr rsgsi;
& yrer v . -
S{.xter _t,pe s = "";
LA S MR S
‘errvr messanes
Si.erri ~sg3s g = "N

169

pair_lis:
pair_list ’,’ pair
{
$$.xten_type s = [$l.xten_type_s, PAIR_DELIM, $3.xten_type_s];

stbl build2(sl, $3);
passdn_stbi2 ($1, $3); .

tvisibility informaticn
pa=sdn2_2($1, $3, visible types, visible names);

'error messages
$S.error_msgs_s = [$l.error_msgs_s, $3.error_msgs_s]};
}
| NAME pair

{
$$.xten_type_s = [$l.%text, "::", $2.type_s, PAIR DELIM, SZ.xten_type s];

stbl _buildl(s2);
passdn_stbll($2);

tvisibility information
passdr_2($2, visible types, visible names);

lerror_messages
passup_1(52, error_msgs);

i pair
passup_1(Sl, xten type):

stbl_buildi(sl);
passdn_stbll ($1);

'visibiiity information
passdn_2($l, visible_types, visible_names);

‘error_messages
passup_1(S1, error_msgs):;

NAME BIND expression

§
$S.xten_type_s = [Sl.%text, “"::", S3.xten_type_s};
$S.type_s = $3.xten_type_s;

stbl_buildi(i3);
passdn_stbl1($3);

'visibiiity informaticrn
passdn_2($3, visible types, visible_names);

'error_messages
passup_1($3, error_msgs);

-

operator list
B operatcr_list operator symbol
{
passdn_3(5., xref_value, message fargs, ip_mcmxref};
passdn_stbll(S1);

$$.d_error_s = check_complex_decl($$.ip_mcmxref I, $2.operator_text_s,
$S.message_fargs_i, $2.line_s, $$.stbl_names_i);
'modified version of #mk_complex_decl
$$.ip momxrel s = ($5.d_error_s == NU.LL_STRING)
~> ($l.ip _mcmxref s ($2.operator_text_s) == NULL_STRING)
-> {($2.operator_text_s : [$S.message_fargs_i,
XREF_DELIMITER, i2s(S.xref_value i)])} +|
$l.ip mcmxref s
‘#'{($2.operator_text_s : [$1.ip memxref_s
($2.operator_text_s),
PATTERN_DELIMITER, $$.message_fargs_ i,
XREF_DELIMITER, 12s8($$.xref value_i)])} +|
$l.ip mcmxref s
‘#’ Sl.ip mcmxref s;

‘error messages
$S.errcr_msgs_s = | $l.e ror_msgs s, S5.d_error_s);

)

i
. operatcr_symbol
$S.errcr_msgs_s = check_complex decl($$.ip mcmxref i, Sl.operator_text_s,
$$.message_fargs_i, $l.line_s, $$.stbl names_i):
mk_complex_de..($S.ip mcmxref, $S.error_msgs_s, Sl.operatcr_text_s,
ss.xref value i, $S.message_fargs_i};

SS.operatcr_tex:t s = Sl.%text:;

cr_text_s = Sl.%text;

$$.cperatcr_text_s = Sli.%texy;
$5..ine s = Si.%line;

}

IMPLIES

"
"
b
L
o
iU
x
rr

SS.operatcr_text_s
$5..ire_s = S_l.%.ire;

X

17

}

S$.operator_

$$.1ine_s =

text_s =
$..%line;

ngn;

$S.operator_text_s = ">";
$S.line_s = $1.%line;

EQUALS

{

,—.g»«

NGT

7~
£
m

}
NEQV
{

$S.operator_text_s = "=";

$$.line_s =

$1.%1ine;

$$.operator_text_s = S$l.%text;
$$.line_s = $1.%line;

$$.operator_

$S.lire_s =

text_s =
$l.%1line;

$1.

frext;

$$.operator_text_s = $l.%text;

$s.line_s =

$l.%line;

$S.operator_text s = Sl.%text;

$s.line_s =

$s
$S.line_ s =

S$$.operator_

$S.line_s =

$$.operator_

S.line_s =

$S.operator_

$$.1line_s =

$S.operator_

$s.lire s =

.operator_

$l.%line;

text_s = Sl.

Sl.%1lire;

text s =
$i.%1line;

text_s =
$l.%line;

text s = $1

Si.8%line;

text s =
$i.%line;

sl.

s$l.

S$I.

$text;

$text;

Stexz;

.Srext;

$rext;

172

PLUSMARK

{
$S.operator_text_s = "+";
$S.line_s = Sl.%line;

}

MINUSMARK

{
S.operator_text_s = "-";
$S.line_s = Sl.%line;

}

STARMARK

{
$$.operator_text_s = "*";
$$.line_s = $l.%line;

}

SLASH

{
$S.operator_text_s = "/";
$$.line_s = Sl1.%line;

SS.operator_text_s = §l.%text;
$$.line_s = Sl.%line;

$$.operator_text_s = $l.%text;
$$.line_s = $i.%line;

$S.operator_text_s = Sl.%text;
$S.line_s = S$l.%linre;

$S.operator_text s = Sl.%text;
$S.line_s = $l.%line;

SS.operator text s = $1.%text;
$S.lire_s = Sl.%.ine;

$S.operator_text_s = $i.%text;
$S.line_s = Sl.%line;

DCTMARK

{
SS.operator text_s = ".";
$S.lire_s = Sl.%.ine;

LBRACK

APPENDIX C - SYNTACTIC ERROR PRODUCTIONS.

This Appendix contains the syntactic error productions that were developed for
version 1.5 of the SPEC grammar. This version was five versions prior to the version
used for the type checker, but the methodology used to implement the error productions .
is fully applicable to the newest version of the grammar. For the type checker to be a
fully functional tool, these error productions must be integrated into the iinal product. In

this way, syntactic and semantic errors could be identified concurrently.

version stamp S$Header: spec.k,v 1.5 88/02/16 13:27:58 berzins Exp $

In the grammar, comments go from a "!" to the end of the line.

Terminal symbocls are entirely upper case or enclosed in single quotes (’).
Nonterminal symbols are entirely lower case.

! Lexical character classes start with a captial letter and are enclosed in {}.
In a regular expression, x+ means one or more x’s.

In a regular expression, x* means zero or more x’s.
In a regular expression, [xyz) means x or y or z.
! In a regular expression, [“xyz] means any character except x or y or z.
! In a _egular expression, [a-z] means any character betweer a and z.
' In a regular expression, . means any character except newline.
! definitions of lexical classes -
fdefine Digit :10-9]
fdefine Irt :{Digit}+
$cefinre _etter :{a-zA-2] R
faefine Alpha :({Letter} | {Digit}i"_")
tdefine Blank :{ \t\n}
%define Cuote 2 ("]
tdefine Backslash P\
taef:ine Crar :(:""\\1{Backs.ash}{Quote}: {Backslash}{Backslash})

! definitions of white space and comments

:{Blank}+

1Mot xn\nn

! definitions of compound symbols and keywords

cng"
amgn
;mam

cn=>n

sPg=>"

PP .

I3

sny_m

sm_¢n

v

B A AN A

el
O

snoyn

174

NLE ;Meg="

NGE Na>="

ZQV ==

NEQV Fom==n

RANGE ".."

APPEND Hul e

MCC : {Backslash} IMOD

EXP :W“l

BIND HuE A

ARROW HEP

Iw :IF

THEN :THEN

ELSE :ELSE

IN :IN

) U

ALL tALL

SOME :SOME

NUMBER :NUMBER

SUM :SUM

PRODUCT :PRODUCT

SET :SET

MAXIMUM :MAXIMUM

MINIMUM tMINIMUM

UNION :UNION

INTERSECTION :INTERSECTION

SUCE :SUCH{Blank}*THAT

ELSE_IF tELSE{Blank}*IF

AS :AS

CHOCSE :CHOOSE

CONCEPT :CONCEPT

DEFINITION :DEFINITION
:DELAY
:DO
tEND
tEXCEPTION
:EXPCRT
134
:FOREACH
:FROM
cFUNCTION
:GENERATE
:HIDE
:IMPORT
:INHERIT
tINITIALLY
:INSTANCE

INVARIANT :INVARIANT

ITERATOR :ITERATOR

MACHINE :MACHINE

MESSAGE tMESSAGE

MODEL :MODEL

co :0OC

93 Hel3

OPERATCE :OPERATCR

CTHERWISE :OTHERWISE

PERICC (PERICD

175

RENAME
REPLY

SEND

STATE
TEMPORAL
TIME

TO
TRANSACTION
TRANSITION
TYPE

VALUE
VIRTUAL
WHEN

WHERE

SECONDS
MINUTES
HOURS
DAYS
WEEKS
NANCSEC
MICROSEC
MILLISEC

INTEGER_LITERAL
REAL LITERAL
CHAR_LITERAL
STRING_LITERAL

NAME

! operator precedences
! %left means 2+3+4 is (2+3)+4.

:RENAME
:REPLY
:SEND
:STATE
: TEMPORAL
:TIME
:TO
:TRANSACTION
¢+ TRANSITION
:TYPE
:VALUE
:VIRTUAL
¢t WHEN
:WHERE

:SECONDS
tMINUTES
:HOURS
:DAYS
:WEEKS
:NANOSEC
:MICROSEC
tMILLISEC

:{Int}
{Int)}"."{Int}

SN mw

: {Quote} {Char}*{Quote}

:{letter}{Alpha}*

$left ’;', IF, DO, EXCEPTION, NAME, SEMI;
$leftr ’,', COMMA;
$lef: SUCH;
$lefr IFF;
fleft IMPLIES;
left OR;
$lefe ANZ;
Sleft NCT;
tleft r<t, '>', '=', LE, GE, NE, L7, NGT, NLE, NGE, EQV,
$nonassoc IN, RANGE;
Sleft U, APPEND;
Slef: f4f, '-', PLUS, MINUS;
$lefc rxr, 7/, MUL, DIV, MOZ;
Slef: UMINUS;
fleft EXP;
tleft r§r, o, P, '(’, '.', DOT, WHERE;
tleft STAR;
L 1]

lattribute declarations

L1}
! productions of the grammar
start

spec

176

spec
: spec medule

| spec error module

! A production with nothing after the "|"™ means the empty string
! is a legal replacement for the left hand side.

module

: fanection

machine

| definition

instance ! of a generic module

.

function
: optiocnally virtual FNCTION interface messages concepts END
}
I optionally virtual FUNCTION error messages concepts END

B

N
i opticna.ly_virtual FUNCTION interface error
;
;

]}

~

Virtual modules are for inheritance only, never used directly.

machine
: cplionally virtual MACHINE interface state messages transactions temporals
concepts END
{

i opticnal:y virtual MACHINE error state messages transactions temporals concepts
END

prliorally virzual MACEINE interface error

"

177

type
: optionaily virtual TYPE interface model messages transactions temporals
concepts END
{
}

| optionally virtual TYPE error model messages transactions temporals concepts END

{

}

| optionally virtual TYPE interface error

{

~

definition
: DE
}

EFINITION error concepts END

1

INITION interface concepts END

N e IS

1 DEFINITION interface errcr
/
{

}

instance
: optionally_virtual INSTANCE parametrized_name ’'=’ parametrized rame hide
renames ENC

{

¢ optionally_virtual INSTANCE error ‘=’ parametrized_name hide renames END

cptionally virtuai INSTANCE parametrized name error END
{

’

. oprionally virtual INSTANCE parametrized name ‘=’ error END

}
optionaliy_virtual INSTANCE parametrized_name ‘=’ parametrized name error

For making instances cor partial instantiations of generic modules,
! and for making interface adjustments tc reusable components
! by hiding or changing some names.

178

interface
: NAME fcrmal parareters inherits imports export

This part describes the static aspects of a module’s interface.

The dynamic aspects of the interface are described in the messages.
! A module is generic iff it has parameters.

! The parameters can be constrained by a WHERE clause.

! A module can inherit the behavior of other modules.

! A module carn import concepts from other modules.

! A module can export concepts for use by other modules.

therits

o

: inherits INHERIT parametrized_name hide renames

ancestors are generalizaticns or simplified views of a module
! an actor inherits all of the behavior of its ancestors

ride

: HIDE name_list

r providing limited views of an actor.
ser c.asses may see different views c¢f a sysiem.

renares
: rerames RENAME NAME AS NAME

+ renares RINAVI errcr AS NAv:-

renares REINAME NAMZ errcr NAME

179

imperts

export

messages

message

.

~e

renames RENAME NAME AS error
{

! Renaming is useful for preventing name conflicts when inheriting
! from multiple sources, and for adapting modules for new uses.

! The parameters, model and state components, messages, exceptions,
' and concepts of an actor can be renamed.

: imports IMPORT name_list FROM parametrized name

imports IMPORT error FROM parametrized name
{

}

imports IMPORT name_list errcr parametrized_name

{
}

imports IMPORT name_list FROM error
{

EXPORT name list

EXPORT errer
{

: messages message

~

: MESSAGE message_header operator response
{
i
MESSAGE message_header error

180

respcnse
: response_body

| response_cases

response_cases

: WHEN expression_list response_body response_cases

! OTHERWISE response_body

| WHEN error response_body response_cases

| iEN expressior_list response_body error

-\§‘.4,A§v,~

}
CTHERWISE error

response_body

: cpt_chocse opl_rep.y opt_sends opt_transition

{1

cpt _choose

: CHOCSE ' (’ field_list restriction '}’

CHOCSL ' (' field_list restriction error
{

¢ REPLY message_header where

181

opt_sends

: sends
]
!
{}
sends
: sends send
{
}
! send
{
send

: SEND message_header TO parametrized name where foreach

)
| SENC message_header error parame:rized name where foreach
{

~

message_header TC errcr

-~
tx1
rd
(9}

: TRANSITION expression_list ! for describing
i

! TRANSITION error
¢

message_header
: optiona._excepticr optional name fcrmal arguments

where

5
t
m
u
m
®
x
™
'y
D
V]
I
O
.
B
7]
'

182

$prec SEMI must have a lower precedence than WHERE

3
n

J
¥}
®
ot
"
[}
r

i

optionally_virtual
: VIRTUAL

~

optional_exception
EXCEPTION

! $prec SEMI

operator
: operator OPERATOR operator_list

t

: FCREACHE ' (' fie.d list restriction ')’

. FOREACE errcr

CREACE ' (’ errcr

' FOREACH is used tc describe a set of messages to be sent.

183

conceptls

concept

where

wnere

mode.l

statle

~

concepts concept

{
}
: CONCEPT NAME formal parameters ‘:’ type_spec where
! constants
{
}
| CONCEPT NAME formal_ parameters formal_arguments where VAL': ¢
! functicns
{

}

CONCEPT error formal_rarameters formal armmmencs whe.e VALUD [..-:.

{

}

CONCEPT NAME error VALUE formal_arguments where
{

}

CONCEPT NAME erreor ‘:' type_spec where

CONCEPT NAME formal_parameters ':’ error

CONCEPT NAME formal parameters formal arguments where VALUE error

! data types have ccnceptual models for values
: MODEL formal arguments invariant

I MODEL formal arguments invariant initially
! iritially clause specifies automatic variable initialization
{
}
MODEL error invariant initially
)
MODEL formal_arguments invariant error

{
}

! machines have conceptual models for states
: STATE formal_arguments invariant initially

TE errcr invariant initially

7 P
&
-

>

STATE forrmal_arguments invariant error
{

184

rva.

Aarz."en

.-

invariant ! invariants are true in all states
¢ INVARIANT expression_list
{
}
. i INVARIANT error
(.
}
;
) initially ! irnitial conditions are true only at the beginning
: INITIALLY expression_list
{
}
{ INITIALLY error
{

)

transaciions
: transactions transaction

transaction
’

¢ TRANSACTION parametrized rame ‘=’ action_expression where

r_

{
}
- ' TRANSACTICN error ‘=’ action_expression where
{
}
RANSACTION parametrized name error

I TRANSACTION parametrized name ’=’ error
{
1
. Transactions are atomic.
. Tne where clause can specify timing constraints.
action_expressicn
¢ action_expression ‘;’ action_list Sprec SEMI ! sequence

;' error

I acticn_expression
{

P action_list action_list Sprec STAR ! parallel

185

I IF alternatives FI ! choice
{
}
| DO alternatives OD ! repetition
{
}
| parametrized name ! a normal message
{
}
| EXCEPTION parametrized name ! an exception message

{

}

IF error FI

{

}

DO error OD

{

}

EXCEPTION error

{

}

IF alternatives error
{

}

DO alternatives error
{

}

alternatives

guard

tempora.s

aiternatives OR guard action_expression
| guard action_expression

{
}
alternatives OR error
{
}

WHEEN expression ARROW

{

}

WHFN error ARROW

{

}

WHEN expression error
{

i

: temporals temporal

186

temporal

|

.

{
}

TEMPORAL NAME where response

TEMPORAL error

{
}

TEMPORAL NAME error

{

! Temporal events are trigged at absolute times,

! in terms of the local clock of the actor.

! The "where™ describes the triggering conditions
! in terms of "TIME" and "“PERIOD".

formal parameters ! parameter values are determined at specification time
I{I

field iis:

field iist '}’ where

error '}’ where

field list error where

ments are evaluated at run-time
")

fieid list ',’ field

187

| error ’,’ field
{
}

field
name_list “:’ type_spec

| S’ NAME ‘:’ type_spec

{
}
| name_list ‘:’ error
{
}
| 'S’ error ':’ type_spec
{
}
| *$’ NAME error type_spec

| *S' NAME ’:’ error

| name_list error type_spec

{1}

type_spec
: parametrized _name ! name of a data type

I TYPE actual_parameters

| FUNCTION actual_parameters

MACHINE actual_ parameters

i ITERATOR actual_ parameters

name_list
name_list NAME

188

: NAME formal parameters

~

parametrized_name
: NAME actual_parameters

actual _parameters ! parameter values are determined at specification time

: '{’ arg_list '}’

) §prec SEMI ! mus- have a lower precedence than ‘{’

actual argumerts ! arguments are evaluated at run-time
(' arg_list ')

' $prec SEMI ! must have a lower precedence than * (’

arg_.ist
: arg_list ',’ arg fprec COMMA
i
i
I arg
{
i
| arg_list ',’ error
{
}
arg

. express.on

189

expression_list

: expression_list ',’ expression Sprec COMMA
{
}
| expression
{
}
| expression_list ’,’ error
{
}

| error ’,’ expression

{1}

expression
: quantifier *(’ field list restriction BIND expression ')’

| parametrized name actual_arguments

| parametrized name '@’ parametrized name actual_ arguments

| NOT expression §prec NOT
£
}

| expression AND expression $§prec AND
{
}

. expression OR expression $prec OR
{

| expression IMPLIES expression $prec IMPLIES
}

! expression IFF expression $prec IFF
{
}

| expressionr ‘<’ expression $prec LE
{
}

| expression ’'>’ expression fprec LE

L}

' expressjon ‘=’ expression Sprec LE

expression LE expression Aprec LE

190

exprression GE expression

expressionrn NE expression

expression NLT

expression NGT

expression NLE

expression NGE

exgression EQV

expression NECV expression

-’ expressicn

expressicn ’+'

expressicr -

exgressicn ' *’

expression '/’

expression MOD

expression EXP

t

expression

expression

exgression

expression

expression

expression

exgression

expressicn

expression

expression

expression

expressicn U expression

191

Sprec

Sprec

Aprec

Sprec

Sprec

fprec

Sprec

tprec

$prec

%prec

S§prec

Sprec

Sprec

Aprec

Aprec

LE

LE

LE

LE

LE

LE

LE

UMINUS

PLUS

MINUS

[V

DIV

MOD

EXP

|

s?

x

'
i

expression APPENT expressicn Sprec APPEND

expression IN expression Aprec IN

'*' expressicn Sprec STAR

*x is the value of x before a transition

! x is the value after the transition

'S’ expression Sprec DOT
' $x represents a collection of items rather than just one

= {x, $s2} means sl = union({x), s2)

! 81 = [x, $s2] means sl = append((x]), =s2)
expression RANGE expression Sprec RANGE
in {a .. b! iff x in ia .. b} iff a <= x <= b

1ola b] is sorted in increasing crder
expression ’.’ NAME Sprec DOT

exgressicr '’ Sprec D07

(' expressicn ')’

"{’ expression units ')’

PERIOD

literal

literal

timing express:on

-3
>
(1
1]
2
2]
ry
[}
o}
ol
)
o]
]
W
I
('t
b

ime, used in temporal evenis

The time betweern the triggering event and the respcnse

! The time between succr ssive events of this type

'@’ parametrized_name ! literal with explicit type

! An undefined value to be specified later

r

| expression

egal value

expressiocr THEN expression middle cases ELSE expression FZ
124 ¥ —_

‘>’ error
‘<’ expression
fier ' (' error ')’

restriction BIND error ')’

NCT error

i

3

‘-’ errcr

{

}

'*!’ error

{

'S’ errcr

i

'

'{' errcr ")
.I

IF errcr THEN express.orn middle_cases ELSE expression FI
I

M

N errcr rmiddie_cases ELSE expression FI

)

HEN expression middle_cases ELSE error

1]

_cases ELSE IF expression THEN expression

193

‘

}

middle_cases ELSE_IF expression THEN error
;

J

quantirier

: ALL
{
)
| SOME
{
}
| NUMBER
{
}
| SUM
{
!
i PRODUCT
{
i
I SET
MAXIMUM
i
MINIMUM
?
UNION
INTERSECTICN
{

: SUCH expression

164

exgress.on

INTEGER_LITERAL

REAL_LITERAL

CHAR_LITERAL

STRING_LITERAL

¥ ONAME ! enumeration type literal

L] ’

expressions

expressicns '’ ! set literal

expressicr ';’ expressions '}’ ! map literal

pair '’ ! one_of literal

errcr

pair_list error

expresr, .. +.50 error

'

re.atio. -~ ~rais are sets of tuples

expressiorn_list

195

! sequence litera

! tuple literal

1

pair list
: pair_list ',’ pair

{
}

| NAME pair
{
}

| pair
{
}

| pair_list ',’ error
{
}
pair
NAME BIND expression
!
}
! NAME BIND error
{
}
units
NANOSEC

{
}

I MICROSEC

SECCNDS
{
I MINUTES
{
}
I HOURS
{
}
' CAYS
)
WEEKS

196

: operator_list operator symbol

i operator_symbol
{
}
| operator_list error operator_symbol
{
}
operator_symbol
: NOT
{
}
I AND
{
}
¢ OR

197

¢ NLT

NLE

NGE

EQV

¢ NEQV

+ MOC

| EXP

APPEND

RANGE

198

199

APPENDIX D - TYPE CHECKER ATTRIBUTES.

This Appendix contains a list of all of the attribute descriptive names used in the

implementation of the type checker with their purpose. This list is not all encompassing.

Various attributes that are slight variations of the below named attributes have been left

out. All of the attributes not included have an "ip" prefix with a "main” name

corresponding to a name listed below.

Attribute Name
%line

Torext

actual_name_text
actual_params
actual_text_s
arg_text
arglist_text

args_i

d_error_s

env_i

error_msgs

Aurtribut se

A Kodiyak predefined attribute yielding the line number
in the source text of a terminal symbol.

A Kodiyak predefined attribute yielding the actual text
of a terminal symbol.

The actual text of an actual name.

The actual parameters associated with an actual name.
The actual text associated with a non-terminal.

The text of an arg non-terminal.

The text of an argument list (arg_list) non-terminal.

The arguments associated with a particular non-
terminal. This attribute is commonly used in the formal
name non-terminal to obtain the arguments associated
with the name so a "pattern” may be created.

An attribute containing an error message relating to the
declaration of a new name (if any such error exists).

The current environment of a non-terminal.

This attribute contains all error messages identified in
the current and children non-terminals.

200

—

fieldpattern

global_type

ip_lclzd_mcmxref

ip_mcmxref

ip_mxref

local_types_s
line
message_name_s
message_fargs_s

mod_types

module_name
mxref_value
name_fargs
name_text
name_type_text

name_type_value

The string containing the non-terminals name and it’s
type, separated by a predefined delimiter.

A map containing all global type names and their
translation.

A localized attribute containing the same information as
the mcmxref attribute. Used in the final stages of layer
2 to integrate ip_mcmxref attributes from different
modules.

A map containing all module, message and concept
names. This map is used in layer 2 to build the layer 3
attribute "stbl". The range of the map contains patterns.

A map which is being constructed to contain all module
names. The range of the map contains the module
names pattern and cross reference. This map is used in
layer 1 to obtain information needed in the layer 2 table
"ip_mcmxref™.

The type names that are local to a non-terminal.
The line number associated with a non-terminal.
The text of a message’s name.

The text of the formal arguments of a message.

A localized map containing the type names and their
translations that are visible. This table and the
"global_type" attributes are used to build the
"visible_types" map.

The name of the current module.

The cross reference value of the current module.
The formal arguments associated with a name.
The text associated with a formal or actual name.
The text of a name’s type.

The translated value (obtained from the visible types
table) of a name’s type.

201

name_params
operator_text
signature

stbl_class

stbl_names

stbl_params

stbl_result

text
type_name_text
type_name_value

type_table_i

visible_names
visible_types
xref_value

xten_type_

The parameters associated with a formal or actual name.
The text associated with an operator non-terminal.
The signature (name and arguments) of a non-terminal.

Classes of all names used (e.g. Function, Message, etc.)
Accessed by the cross reference value of the name.

All names used throughout the program. Accessed by a
cross reference value.

The formal parameters of a name (if any). Accessed by
a cross reference value.

The resultant type of a name. Contains extended type
information. Accessed by the cross reference value of
the name.

The text of a non-terminal.

The text of a type_spec’s name.

The translated value of a type_spec.

A map coalescing the contents of the "mod_types” and
"global_type" tables.

A map containing all names visible.
A map containing all type names visible.
The cross reference value of the current name.

The extended type of a non-terminal.

202

REFERENCES.

. Berzins, V., and Luqgi, Draft of Software Engineering with Abstractions: An
Integrated Approach to Software Development with Ada. Addison-Wesley, 1988. .

. Weigand, J. Design and Implementation of a Pretty Printer for the Functional
Specification Language SPEC, M.S. Thesis, Naval Postgraduate School, June, 1988.

. Berzins, V., and Gray, M., "Analysis and Design in MSG.84: Formalizing Functional
Specifications," /EEE Transactions in Software Engineering, v. 11, pp. 657-670,
August 1985.

. Johnson, S., YACC--Yet Another Compiler Compiler, Bell Laboratories, Murray Hill,
NI, July 1978.

. Farrow, R. "Generating a Production Compiler for an Attribute Grammar,"
IEEE Software, v. 1, pp. 77-93, October 1984,

. Herndon, R. Artribute Grammar Systems for Prototyping Translators and
Languages. Ph. D. Dissertation, University of Minnesota, 1988.

. Nicholas, C. Assusring Accessibility of Complex Software Systems. Ph. D.
Dissertation, University of Ohio State, 1988.

. Aho, A. and Ullman, J., Principles of Compiler Design, p. 58, Addison-Wesley,
1979.

. Knuth, D. "On the Translation of Languages from Left to Right,” Information and
Control, v. 8, pp. 607-639, 1965.

10. Brooks, F. "The Mythical Man-Month," Datamation, v. 20, No. 12, pp. 44-52,

December 1974.

11. Vemer, J and Tate, G., "Estimating Size and Effort in Fourth-Generation

Development”, IEEE Software, pp. 15-22, July 1988.

12. Penello, T. "Very Fast LR Parsing,” Conference Record of the 9th Annual ACM

Symposium on Principles of Programming Languages, pp. 224-233, 1982.

13. University of Helsinki Technical Report A-1978-2, The Compiler Writing System

HLP, by K. Raiha, M. Saarinen, E. Soisalon-Soininen, and M. Tienari, March 1978.

14. Lorho, B. "Semantic Attribute Processing in the System Delta," Lecture Notes in

Computer Science, v. 47, pp. 21-40, Springer-Verlag, 1977.

203

15. Ganzinger, H,, Ripken, K., and Wilhelm, R., "Automatic Generation of Multipass
Compilers,” Information Processing 77, Proceedings of IFIP Congress 77, pp. 535-
540, North-Holland Publishing Co., 1977.

16. Milton, D., Kirchhoff, L., and Rowland, B., "An ALL(1) Compiler Generator,”
Proceedings of the SIGPLAN ’79 Symposium on Compiler Construction, ACM
SIGPLAN Notices, v. 14, No. 8, pp. 152-157, August 1979.

17. Kastens, U., Hutt, B., and Zimmerman, E., "GAG: A Practical Compiler Generator",
Lecture Notes in Computer Science, v. 141, Springer-Verlag, 1982.

18. Bell Laboratories Computer Science Technical Report 39, Lex - A Lexical Analyzer
Generator, by M. Lesk and E. Schmidt, October 1975.

19. Naval Postgraduate School Technical Report NPS52-89-029, A Student’s Guide to
SPEC, by V. Berzins and R. Kopas, May 1989.

20. Naval Postgraduate School Technical Report NPS52-87-032, The Semantics of
Inheritance in Spec, by V. Berzins and Luqi, July 1987.

21. Beebe, D. The Design and Implementation of a Syntax Directed Editor for the
Specification Language Spec, M.S. Thesis, Naval Postgraduate School, June, 1989.

204

BIBLIOGRAPHY.

Adomi, G., Boccolatte, A., and Di Manzo, M., "Top-Down Semantic Analysis",
Computer Journal, v. 27, August 1984,

Berzins, V., Gray, M., and Naumann, D., "Abstraction Based Software Development",
Communications of the ACM, v. 29 No. 5, pp. 402-415, May 1986.

Booch, G., Software Engineering with Ada, 2nd edition, Benjamin/Cummings, 1987.

Cleaveland, Craig. "Building Application Generators," IEEE Software, v. 14
Pp. 25-33, July 1988.

Farrow, R., "Generating a Production Compiler for an Attribute Grammar," /EEE
Software, v. 1, October 1984, pp. 77-93.

Fisher, A., CASE, Using Software Development Tools, John Wiley & Sons, Inc., 1988.

Herndon, R. and Berzins, V., "The Realizable Benefits of a Language Prototyping
Language”, IEEE Transaction on Software Engineering, v. 14, June 1988, pp. 803-809.

MacLennan, B., Principles of Programming Languages: Design, Evaluation, and
Implementation, 2nd edition, Holt, Rinehart & Winston, 1987.

Naval Postgraduate School Technical Report NPS52-87-033, Specifying Large Software
Systems in Spec, by V. Berzins and Lugi, July 1987.

Naval Postgraduate School Technical Report NPS52-88-007, Generating a Language
Translator based on an Attribute Grammar Tool, by LuQi and R. Herndon, April 1988.

Naval Postgraduate School Technical Report NPS52-88-038, Languages for
Specification, Design and Prototyping, by V. Berzins and LuQi, September 1988.

Reps, Charles. Generating Language-Based Environments. Ph. D. Dissertation,
University of Massachusetts, Amherst, 1983.

University of Mirnesota Computer Science Department Report Technical Report 85-25,
AG: A Useful Atiribute Grammar Translator Generator, by R. Hemdon and V. Berzins,
July 1985.

205

University of Minnesota Computer Science Technical Report 85-37, The Incomplete AG
User’'s Guide and Reference Manual, by R. Herndon, October 1985.

206

INITIAL DISTRIBUTION LIST.

Ada Joint Program Office
OUSDRE (R&AT)

The Pentagon
Washington, D.C. 20301

Commanding Officer

Naval Research Laboratory
Code 5150

Aun. Dr. Elizabeth Wald
Washington, D.C. 20375-5000

Defense Advanced Research Projects Agency (DARPA)
Integrated Strategic Technology Office (ISTO)

Atutn. Dr. Jacob Schwartz

1400 Wilson Boulevard

Arlington, Virginia 22209-2308

Defense Advanced Research Projects Agency (DARPA)
Integrated Strategic Technology Office (ISTO)

Atn. Dr. Squires

1400 Wilson Boulevard

Arlington, Virginia 22209-2308

Defense Advanced Research Projects Agency (DARPA)
Director, Naval Technology Office

1400 Wilson Boulevard

Arlington, Virginia 22209-2308

Defense Advanced Research Projects Agency (DARPA)
Director, Tactical Technology Office

1400 Wilson Boulevard

Arlington, Virginia 22209-2308

Defense Technical Information Center
Cameron Stction
Alexandria, Virginia 22304-6145

Dr. Amiram Yehudai

Tel Aviv University

School of Mathematical Sciences
Department of Computer Science
Tel Aviv, Israel 69978

207

12.

13.

14.

15.

16.

17.

18.

fﬁ

10.

11.

Dudley Knox Library

Code 0142

Naval Postgraduate School
Monterey, California 93943-5002

Fleet Combat Direction Systems Support Agency
Attn. Mike Reiley, Code 00T
San Diego, California 92147-5081

Fleet Combat Direction Systems Support Agency
Attn. George Roberson, Code 8D
San Diego, California 92147-5081

Internatonal Software Systems Inc.
12710 Research Boulevard, Suite 301
Awn. Dr. R. T. Yeh

Austin, Texas 78759

Kestrel Institute

Attn. Dr. C. Green

1801 Page Mill Road

Palo Alto, California 94304

Lt Robert Kopas

Department Head School Class 110
Surface Warfare Officers School Command
Newport, Rhode Island 02841-5012

Massachusetts Institute of Technology

Department of Electrical Engineering and Computer Science
545 Tech Square

Aun, Dr. B. Liskov

Cambridge, Massachusetts 02139

Massachusetts Institute of Technology

Department of Electrical Engineering and Computer Science
545 Tech Square

Attn. Dr. J. Guttag

Cambridge, Massachusetts 02139

MCC Al Laboratory

Attn, Dr. Michael Gray

3500 West Balcones Center Drive
Austin, Texas 78759

Office of Naval Research

Computer Science Division, Code 1133
Aun. Dr. R. Wachter

800 N. Quincy Street

Arlington, Virginia 22217-5000

208

¢S

19.

20.

21.

22.

23.

24.

25.

Office of the Secretary of Defense
R & AT/S & CT, RM 3E114
STARS Program Office
Washington, D.C. 20301

Oregon Graduate Center
Portland (Beaverton)
Atn. Dr. R. Kieburtz
Portland, Oregon 97005

Software Group, MCC
9430 Research Boulevard
Aun. Dr. L. Belady
Austin, Texas 78759

University of Pittsburgh
Department of Computer Science
Atn. Dr. Alfs Berztiss
Pittsburgh, Pennsylvania 15260

Purdue University
Department of Computer Science
West Lafayette, Indiana 47906

The Ohio State University

Department of Computer and Information Science

Attn. Dr. Charles Nicholas
2036 Neil Ave Mall
Columbus, Ohio 43210-1277

Berzins

Code 52Bz

Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5100

209

